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1 Introduction

It seems clear that the present quantum mechanics is not in its final form. Some
further changes will be needed, just about as drastic as the changes made in pass-
ing from Bohr’s orbit theory to quantum mechanics. Some day a new quantum
mechanics, a relativistic one, will be discovered, in which we will not have these
infinities occurring at all. – Paul Dirac, in Albert Einstein : Historical and Cultural
Perspectives: The Centennial Symposium in Jerusalem, edited by Gerald James
Holton and Yehuda Elkana, 1979, p. 85.

If quantum mechanics suffices to describe nature, then the inability of relativistic quantum field
theory (RQFT) [7, 23, 24, 51, 60] to realize physically nontrivial quantum mechanics [8, 9, 55]
either indicates that the constructs that realize relativistic quantum physics (RQP) have re-
sisted discovery, or there are considerations within RQFT that are inconsistent with realization.
Search for an inconsistency within RQFT identifies canonical quantization as unnecessary and
presumably unrealizable for interacting fields. If, upon measurement, a general description
“collapses” to an eigenfunction that provides a classical description for the observable, then
canonically quantized operators must be Hermitian with eigenfunctions that are classical de-
scriptions.a This conjectured quantum-classical correspondence elevatesb classical dynamical
variables to quantum mechanical operators. In a nonrelativistic canonical quantization, posi-
tion and momentum are Hermitian operators with eigenfunctions that are classical descriptions
of the observable. However, while classical dynamics must approximate “macroscopic” quan-
tum state descriptions, those perceived as classically described, a correspondence need not be
arbitrarily precise, need not apply to every state, and if the Hilbert space of states is separable
and there is an eigenvalue for any real number, then the eigenfunctions are not elements of
the Hilbert space. And, of course, no quantum-classical correspondence applies when indistin-
guishability, entanglement, or particle production are exhibited. Such characteristics are not
classical. Quantum fields generally do not have eigenfunctions to realize a “collapse,” section

aClassical description for the classical dynamical variable that corresponds with the operator. Quantum state
descriptions include no complete classical state descriptions: the Heisenberg uncertainty principle depicts that
both location and momentum can not both be specified exactly in a quantum description, and no Hermitian
operator has an eigenfunction for any real number within a separable Hilbert space. A Hermitian operator in a
rigged Hilbert space may have a generalized eigenfunction for any real number, but these generalized eigenfunc-
tions are not elements within the Hilbert space of states. With the revised quantum-classical correspondence,
the corresponding classical description is a conditional approximation of the quantum description rather than a
“classical limit.”

bHere, a canonical quantization is also designated an elevation. Considering the quantum state descriptions
as functions over domains determined by the ranges of observables, the canonical quantization of the classical
dynamical variable specifying each observable is the Hilbert space operator implemented as multiplication of
the state describing function by an argument, e.g., Xψ(x) = xψ(x) and in the Fourier transform domain,
Pψ̃(p) = pψ̃(p). Then, eigenfunctions of elevations are either Dirac or Kronecker delta functions.



2 REALIZATION OF RELATIVISTIC QUANTUM PHYSICS 5

3.1.3, yet Hermiticity of the field is maintained in RQFT.c Hermiticity does provide that ex-
pectations of the field are real. The constructed realizations of relativistic quantum physics
follow from questioning the quantum-classical correspondences of the canonical formalism. The
quantum-classical correspondence characterizes the approximation of quantum mechanics by
classical descriptions.

In these notes, constructions demonstrate physically nontrivial realizations of relativistic
quantum physics (RQP). A revised understanding of the quantum-classical correspondence in
relativistic physics enables realization of RQP with quantum fields. Relativistic location [42],
discussed in section 2 below, is the archetype for this revised understanding. The constructions
satisfy the established properties of quantum mechanics and relativity [9, 13, 59, 60] except
for Hermiticity of the fields that appear in the Hilbert space scalar product. Realization of
quantum mechanics is emphasized over “quantization” of classical description. The quantum-
classical correspondence is considered a conditional approximation of quantum dynamics by
classical descriptions, rather than consider quantum dynamics the “quantization” of classical
descriptions. In the constructions, interaction is implemented with physically nontrivial vac-
uum expectations values (VEV) for non-Hermitian field operators and “trivial” free field-like
Hamiltonians, as an alternative to the RQFT implementation of classically inspired actions ex-
pressed in Hermitian field operators with “trivial” free field-like Hilbert space scalar products.
The constructions determine general state transition likelihoods. These general state transition
likelihoods include limits that are weak interaction asymptotes to Feynman series scattering like-
lihoods. Lorentz covariance is achieved by the constructions with a wholly quantum mechanical
description of states and relativistic interaction, and a Hamiltonian that is demonstrably the
generator of time translation; classically corresponding descriptions approximate the quantum
state descriptions in appropriate instances.

Discussion emphasizes foundation principles for relativistic quantum physics, establishment
of example realizations, and a physical understanding of the development. Associated phe-
nomenology is relatively unexplored other than to establish connections with Feyman series
and classical dynamics. Primary references are Borchers’ [10] and Wightman’s [55, 61] develop-
ments of quantum field theory, Bogolubov, Logunov and Todorov’s review [9], and mathematical
background includes [3, 12, 19, 20, 21, 24, 26, 39, 45, 47, 59].

2 Realization of relativistic quantum physics

Classical and quantum state descriptions must correspond in appropriate instances but a canon-
ical quantization is not necessary, and for relativistic location, is not possible, [42, 64] and ap-
pendix 7.4. A technically revised quantum-classical correspondence is realizable. Relativistic
location provides an archetype for realizable quantum-classical correspondences. The canonical

cIf the quantum field operator were unitarily similar to a free field, then the demonstrable Hermiticity of a
free field would imply Hermiticity of the field.
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quantization of classical location is not Hermitian in relativistic physics: delta functions are
not eigenfunctions of a Hermitian operator in relativistic physics.d Elevations X1, X2, X3 of
location x ∈ R3,

Xν := −i d
dpν

,

are distinct from the Hermitian relativistic location operatorse [42]

X̂ν := −i ω1/2 d

dpν
ω−1/2. (1)

The operators Xν and X̂ν are expressed in the Fourier transform, momentum domain and
ν = 1, 2, 3.f That the canonical quantization of location is not a Hermitian operator illustrates
a “localization problem” in RQFT. Nevertheless, the elevated operators Xν conditionally ap-
proximate the Hermitian operators X̂ν in the sense that the point support of eigenfunctions of
Xν are representatives for the support of the eigenfunctions of the Hermitian location operators
X̂ν , appendices 7.3 and 7.4. The non-Hermitian Xν approximate the Hermitian X̂ν if applied
to appropriate state descriptions. That is,

Xν ≈ X̂ν

when applied to functions dominantly supported on nonrelativistic momenta, those with

ℏ2p2 ≪ (mc)2

dEigenfunctions of a Hermitian operator are necessarily orthogonal if they have distinct eigenvalues [3]. Dirac
delta functions are not orthogonal for a relativistic scalar product.∫

dxdy ∆+(x− y)δ(x− xo)δ(y − yo) = ∆+(xo − yo) ̸= 0

for xo ̸= yo with ∆+(x) a Källén-Lehmann form [9, 53]. There are elevations of the momentum operators,∫
dxdy ∆+(x− y)e−ip1xeip2y = (2π)4δ(p1 − p2)θ(E2)δ(p

2
2 −m2) = 0

if p1 ̸= p2 for the example of the Pauli-Jordan function. The eipx are inverse Fourier transforms of Dirac delta
functions over momenta.

eThe Newton-Wigner location operators X̂ν canonically commute with the Hermitian elevations of momenta
and are Hermitian for the relativistic free field scalar product, appendix 7.3. From the Baker-Campbell-Hausdorff
relations, momentum generates spatial translations.

fSpacetime vectors x := (x0,x) ∈ R4 with x0 = ct and spatial vectors x := x, y, z ∈ R3 are lengths, energy-
momenta are wavenumbers designated p := (p0,p) ∈ R4 with momentum vectors P = ℏp ∈ R3, section 3.1.1.
Energies are E := ℏcp0 and ℏ is Planck’s constant h divided by 2π. c is the speed of light. Momentum vectors
p have components pν , ν = x, y, z and ω = ω(p) is the wavenumber proportional to an energy on the mass m
shell.

ω :=
√
m2c2/ℏ2 + p2.
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within the dominant support.g Relativistic location demonstrates that the presumed quantum-
classical correspondence of a canonical quantization imposes unrealizable constraints on rela-
tivistic quantum physics.

In relativistic quantum mechanics, nature is described by sequences of complex-valued func-
tions over three-dimensional space and the evolution of these functions is parametrized by time
[9, 10]. Sequences of state describing functions over a 3+1 spacetime

f := (f0, f1(x1)1, . . . f1(x1)κ1 , . . . f2(x1, x2)κ1,κ2 , . . .)

label elements |f⟩ of a rigged (equipped) Hilbert space HP , [9, 10, 30, 32, 36, 55], section 3
and appendix 7.2. These function sequences include descriptions of the vacuum, single particle,
multiple particle, wave-like, and composite states. This Hilbert space description fulfills essen-
tial properties of nature [13, 59]. Each xj ∈ R4, j, κj ∈ N, κj ∈ {1, Nc} with Nc the number of
field components. A convenient representation of the states has

|f⟩ :=
∞∑
n=0

∑
(κ)n

∫
d(x)n fn((x)n)(κ)n

|
n∏
k=1

Φ(xk)κk
Ω⟩ (2)

with
(x)n := x1, x2 . . . xn ∈ R4n

the designation for a sequence of arguments xj ∈ R4. f0 ∈ C is the component of the state in
the vacuum state characterized by the sequence

Ω := (1, 0, 0 . . .),

the Nc functions f1(x)κ describe single particle states with masses mκ, and interpretation of
the (Nc)

n functions fn((x)n)(κ)n
in the n ≥ 2, n-argument subspaces of HP distinguishes this

approach to RQP from RQFT developments. In the constructions,h fn((x)n)(κ)n
describes n

particles if classical or nonrelativistic approximations apply, but fn((x)n)(κ)n
can also describe

gThen ω ≈ mc/ℏ = λ−1
c , a constant. For example, in the L2(R3) norm,

∥(Xν − X̂ν)ψ∥
∥ψ∥ ≤ λ2

c√
8α

≪ λc

if λc ≪ α with α characterizing the extent of the spatial support and ℏ/α characterizing the extent of the
momentum support of ψ(x) = exp(−x2/(2α2)). λc is the Compton wavelength (9) for the finite mass m particle.
The condition λc ≪ α provides that the dominant support of ψ(x) is nonrelativistic. On appropriate states, the
expected values of Xν and X̂ν are nearly equal neglecting location differences small with respect to the Compton
wavelength.

hIn the case of a free field Φo(x)κ and discussed further below (14), Φo(x1)κ1 . . .Φo(xn)κnΩ equals n factors of
the creation component of the free field acting on the vacuum Ω as a consequence of a selection of basis function
spaces P.
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k ̸= n particles with distinct species, section 3.1.1.
∏
k Φ(xk)κk

is a product of quantum fields
implemented as a multiplication f × g of function sequences, [10] and section 3.1.3.

∞∑
n=0

∑
(κ)n

∫
d(x)n fn((x)n)(κ)n

|
n∏
k=1

Φ(xk)κk
g⟩ := |f × g⟩. (3)

The ×-multiplication of function sequences is

f × g := (f0g0, . . . ,
n∑
ℓ=0

fℓ(x1, . . . xℓ)(κ)1,ℓ
gn−ℓ(xℓ+1, . . . xn)(κ)ℓ+1,n

, . . . ). (4)

The vacuum Ω is the identity for the ×-multiplication of sequences. In (2), the quantum fields
map

Ω ∈ HP 7→ f ∈ HP

from f × Ω = f . Notation is discussed further in section 3.1.
Vacuum expectation values (VEV) of the quantum fields

⟨Φ(xk)κk
. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1

. . .Φ(xn)κnΩ⟩ ∈ S ′(R4n) (5)

are generalized functions (distributions) in the dual to Schwartz tempered test functions S(R4n).
These VEV together with specification of a basis space of function sequences P ⊆ S determine
the Hilbert space realization of RQP. From Born’s rule, the scalar product in HP determines
transition amplitudes. The VEV determine the scalar product

⟨f |g⟩ :=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m ⟨Φ(x1)κ1 . . .Φ(xn)κnΩ|Φ(xn+1)κn+1 . . .Φ(xn+m)κn+mΩ⟩

×fn(x1, . . . xn)κ1...κn gm(xn+1, . . . xn+m)κn+1...κn+m

(6)

with formal summation notation [19] for the generalized functions (5). The VEV and P de-
termine the Hamiltonian and determine the scattering amplitudes as infinite interval limits
of relativistically invariant transition amplitudes. The state descriptions |f⟩ ∈ HP are equiva-
lence classes within the Hilbert space-norm completion of terminating function sequences f ∈ P
[9, 10, 12, 55]. Basis spaces of functions P(R4n) are subspaces of the space of Schwartz tempered
functions S(R4n) [19] and there is a distinct subspace P(κ)n

(R4n) determined for each

(κ)n = κ1, κ2 . . . κn ∈ Nn

that has a distinct sequence of masses mκ1 ,mκ2 , . . .mκn , section 3.7. Every fn ∈ P(R4n) has
the form

f̃n((p)n)(κ)n
:=

n∏
j=1

(pj0 + ωj) h̃n((p)n)(κ)n
(7)
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with hn ∈ S(R4n) and the wavenumber

ωj := ω(pj) :=
√
λ−2
cj + p2

j . (8)

The reduced Compton wavelength for the mass mκj associated with a field component Φ(xj)κj

is

λcj :=
ℏ

mκjc
. (9)

HP includes elements described by generalized functions with point support over time, functions
used by Lehmann, Symanzik and Zimmermann (LSZ) to describe scattering, [9] and section 3.9.
Here, VEV (5) of the quantum fields Φ(x)κ in (3) satisfy the principles of quantum mechanics
and relativity described in axioms A.1-7, section 3.2, without imposition of unnecessary con-
straints from canonical quantization. The axioms revise the Wightman axioms [9, 10, 55, 61]
and include considerations from RQFT [60].

The inconsistency introduced by canonical quantization is that quantum fields (3) must be
densely defined Hermitian operators.i The Wightman axioms introduce a constraint that the
scalar product (6) simplifies to

⟨f |g⟩ =W (f∗× g)

:=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m ⟨Ω|Φ(x1)κ1 . . .Φ(xn+m)κn+mΩ⟩

×f∗
n(xn, . . . x1)κn...κ1 gm(xn+1, . . . xn+m)κn+1...κn+m

(10)

with f × g the same product of function sequences as in the definition (3) of field [10]. This
constraint ensures the fields are densely defined Hermitian operators. The ∗-dual sequence
f ∈ P 7→ f∗ ∈ S results from an argument order reversal, complex conjugation and a linear
transformation D determined by representation of the Lorentz group.

f̃∗
n((p)n)(κ)n

:= (DT ·)nf̃n(−pn, . . .− p1)κn...κ1 (11)

in matrix notation with (DT )ij := Dji ∈ C, f̃(p) is the Fourier transform (17) of f(x), z denotes
the complex conjugate of z ∈ C and

(D·)nV(κ)n+m
:=

Nc∑
ℓ1=1

Nc∑
ℓ2=1

. . .

Nc∑
ℓn=1

Dκ1ℓ1Dκ2ℓ2 . . . DκnℓnVℓ1...ℓnκn+1...κn+m . (12)

iHermitian fields satisfy Φ(f) = Φ(f)∗ on a common dense domain. Fields Φ(f) consist of Nc component

fields Φ(x)κ defined for f = (f1(x), f2(x), . . . fNc(x)), x ∈ R4, by Φ(f) :=
∑

κ Φ(fκ)κ. Free fields are Hermitian,
Φ(f)∗ = Φ(f∗) for “real” function sequences f = f∗. The ∗-dual function sequences f∗ include an Nc ×Nc linear
transformation D determined by representation of the Lorentz group (11).
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Example D are provided in section 3.3.2. W (f) is the Wightman functional [9, 10, 55, 61].
However, despite concerted efforts [2, 4, 9, 29, 38, 40, 55], no physically nontrivial realization
for W has been discovered and (10) is not satisfied by the constructions that exhibit interac-
tion. The property of VEV that satisfy (10) is designated formal Hermiticity below. While
physically trivial free field VEV satisfy formal Hermiticity, the formal Hermiticity constraint
is abandoned for physically nontrivial fields. The more general scalar product (6) is adopted
for axiom A.1-7 compliance. As a consequence, and consistently with the Haag (Haag-Hall-
Wightman-Greenberg) theorem [9, 55], unitary similarity of interacting and free field operators
is abandoned. Although, as discussed below, RQFT developments persist as approximations to
the constructions.

Motivated by several concerns, quantum field operators (2) that are not Hermitian operators
and revised quantum-classical correspondences are studied in this note. Concerns include:

1. Hermitian elevations may be inconsistent with relativity. Relativistic invariance of like-
lihoods implies that functions with point support over space are not eigenfunctions of a
Hermitian operator in RQP: due to relativity, there is no exact correspondence of location
as a classical dynamical variable with location as an argument of state describing func-
tions [42, 64]. However, the physical relevance of RQFT suggests that an “approximate
elevation” of location suffices. This approximation applies conditionally

2. an exact, “collapse to an eigenfunction” that provides a classical description is stronger
than required by our observations. Conditional and approximate correspondences of clas-
sical and quantum state descriptions suffice. The stronger assertion underlies the elevation
of classical dynamical variable to densely defined Hermitian operator. It is neither pos-
sible to prepare all of a dense set of natural states nor to verify that, for example, there
are states whose location corresponds precisely to one real number. If the eigenfunctions
of corresponding Hermitian operators are accurately represented to great likelihood by
classical dynamical variables in “macroscopic” instances, then a quantum-classical corre-
spondence indiscernible from exact is established

3. quantum fields do not necessarily have any eigenfunctions in the Hilbert space of states,
section 3.1.3

4. a physically equivalent development for the established free quantum field lacks Hermitian
field operators [30]. This alternative construction demonstrates that Hermitian fields are
not necessary to realize relativistic quantum physics

5. there are realizations of RQP consistent with the principles of quantum mechanics and
relativity that lack Hermitian fields, [30, 32, 34, 36] and section 3. Constructed scattering
amplitudes approximate Feynman series scattering amplitudes, section 3.9 and [30, 34].
For example constructions with a single finite mass elementary particle, a short range,
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Yukawa-like equivalent potential suggestive of nuclear forces is associated with scatter-
ing amplitudes in first Born approximation [30, 32]; and long range −g/r pair potentials
suggestive of Newtonian gravity or electrostatics are associated with the evolution of
significantly separated, classical particle-like concentrations in the support of states in
nonrelativistic approximations, section 4. Generally, one quantum dynamical construc-
tion exhibits multiple classical correspondences determined by properties of the state
descriptions and fidelity of the approximation.

Here, non-Hermitian quantum fields are considered. The non-Hermitian fields Φ(x)κ appear in
the VEV (5) and are analogous to the elevations Xν of relativistic location xν . Any fields that
approximately correspond with the associated classical field are Hermitian, analogously to the
X̂ν (1). This departure from earlier constructive efforts [2, 4, 9, 29, 38, 40, 55] results in the
physically nontrivial realizations of RQP. A revised understanding of the quantum description
of relativistic physics, sections 3.1 and 4, enables the realizations of RQP. In the revised un-
derstanding, the quantum-classical correspondence is established by representing the support
of quantum state describing functions with classical dynamical variables. And, classical dy-
namical variables necessarily provide accurate representatives for the quantum description of
state only when support is isolated, and well-represented by one location and one momentum.
State descriptions with isolated support well-represented by one location and one momentum
are designated here as classical particle-like. This approximate and conditional correspondence
of classical and quantum state descriptions substitutes for the elevations conjectured in canon-
ical quantization. Elevations establish correspondences of classical dynamic variables with the
eigenfunctions of hypothesized densely defined Hermitian operators; this exacting correspon-
dence is contradicted by relativistic location. The revision replaces this curious extrapolation
with a more justifiable conditional and approximate correspondence of state descriptions.

Physically nontrivial VEV include n ≥ 4, n-argument connected functions. For example,

⟨Φ̃(p1) . . . Φ̃(pk)Ω| . . . Φ̃(pn)Ω⟩ = . . .+ cnδ(p1+p2+ . . .+pn)
n∏
j=1

δ(p2j−m2c2/ℏ2) (13)

in the construction with a single neutral scalar field Φ(x), section 3.4 and [30, 32]. In (13),
Nc = 1, n ≥ 4, n − 2 ≥ k ≥ 2, Φ̃(p) designates the Fourier transform (18) of Φ(x), and the
contributions of the fewer than n-point connected functions are understood. VEV are cluster
expansions of connected functions, section 3.4.4. The selection of basis function spaces P ⊂ S
limits the states in HP to positive energies. From (7), the basis function spaces P are limited
to functions with Fourier transforms that vanish on appropriate negative energy mass shells:
field component κj is associated with mass mκj , section 3.7.

δ(p2j−m2
κj
c2/ℏ2)θ(−pj0)φ̃n((p)n)(κ)n

= 0 (14)

if φn ∈ P(R4n) with 1 ≤ j ≤ n. Because of this limited support property (14) and the inclusion
of n ≥ 4, n-argument connected functions in the VEV (5), interpretation of state describing
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functions fn((x)n)(κ)n
differs from RQFT: the negative energy component of fields Φ(x)κ are

eliminated. In the example of a free field, section 3.3, the annihilation component of a free field
Φo(x)κ is eliminated for functions from Pκ(R4). Then Φo(x1)κ1 . . .Φo(xn)κnΩ equals n factors
of the creation component of the free field acting on the vacuum Ω, and consequently describes
exactly n particles [30]. And, because physically nontrivial VEV (5) include n-argument con-
nected functions with n ≥ 4, states with different numbers and species of particles are generally
not orthogonal. Since scalar products (6) of state describing functions with different numbers of
arguments do not vanish, there are nonzero likelihoods of observing k ̸= n particles and distinct
particle species for a state described by an n-argument function. But even with interaction,
there are n-argument states well-represented as n classical particles. For example, n-argument
functions fn ∈ HP(R4n) with widely space-like separated supports, and n-argument functions
whose support is limited to sufficiently nonrelativistic momenta describe n particle states [30].
Except for an unobservablej phase difference between forward and scattered contributions, the
plane wave scattering amplitudes resulting from VEV such as (13) coincide with first order
terms from a Feynman-Dyson series [30, 32] with, in some examples, corrections at very rela-
tivistic exchange momenta (small distances) [34]. For the neutral scalar field example (13), the
scattering cross sections coincide with the first order contributions from :P (Φ)4 : interactions.
The phase difference between (13) and the Feynman-Dyson series is necessary to the nonneg-
ativity of the scalar product (6). The phase does not affect scattering likelihoods. Connected
functions such as (13) introduce interaction to the constructions, but preclude Hermitian field
operators. The limitation (14) of the support of the functions in P eliminates Hermiticity
of the field operators, sections 3.1.3 and 3.8. Due to introduction of the support constraint,
the algebra of function sequences P is not ∗-involutive, section 3.1.2, and as a consequence,
the fields in (5) are not Hermitian Hilbert space operators when interaction is implemented;
generally, the adjoints of the field operators are not Hilbert space operators, section 3.8. The
support constraint (14) also implies that there are no states strictly limited to bounded spatial
volumes described by functions in HP [32]. Considered as functions over spacetime, functions
within P do not vanish within any finite spatial volume unless the function is identically zero:
such functions are designated anti-local [52]. Nevertheless, comparing summations over equal
finite volumes, anti-local functions include functions arbitrarily dominantly supported within
one finite spatial volume: such functions are designated essentially localized here, appendix
7.16. The physically significant support of functions in P may be local, section 4.2. For the
VEV (13) to be generalized functions and include massless particles, at least 3+1 dimensional
spacetime is necessary, section 3.5.5.

Equivalently, the constructions can be considered to have unconstrained basis function
spaces with VEV modified from symmetric forms such as (13), section 3.7.2. Then, the basis
function space P = S and the modification to the VEV implements positive energies. S in-

jUnobservable in the scattering limit, and RQFTmethods do not provide estimates for finite interval transition
likelihoods.
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cludes dense sets of real functions with bounded support. If based upon S, then the VEV for
the neutral scalar field example (13) equal the first order contributions from a Feynman-Dyson
series with phase differences, appendix 7.9 and [30, 34],

⟨Φ̃(p1) . . . Φ̃(pk)Ω| . . . Φ̃(pn)Ω⟩ = . . .+ cnδ(p1+p2+ . . .+pn)
k∏
j=1

θ(−pj0)δ(p2j−m2c2/ℏ2)

×
n∏

ℓ=k+1

θ(Eℓ)δ(p
2
ℓ−m2c2/ℏ2).

These scalar field Feynman-Dyson series VEV truncated at first order satisfy A.1-7 but do not
satisfy the Wightman axioms [30]. The scalar product is not of the form (10) with the modified
VEV. While the algebra of basis test functions S is ∗-involutive, the variation of the VEV with
k precludes Hermiticity of the field operators (5), section 3.8. The development based on the
energy support limited P is connected with the development based on S by the equivalence

ωj ± pj0
2ωj

= θ(±pj0) (15)

as multipliers of generalized functions supported solely on mass shells. The lefthand side is a
multiplier function [20] applicable to test functions and defines the function spaces P from S,
section 3.7, while the Heaviside functions θ(E) evidently limit the support of VEV to positive
energies. The alternative RQP constructions present the same puzzlement as the Reeh-Schlieder
theorem from RQFT [44], section 3.7.2: although functions with local support can be considered
to label states in relativistic quantum physics, the spatial support of quantum fields is global.

Realizations of relativistic quantum physics include: the basis space of test function se-
quences f ∈ P (14); the VEV (5) that determine the scalar product (6); and a physical un-
derstanding of the state descriptions |f⟩ ∈ HP (2). Revisions to the Wightman axioms are the
prospective axioms for relativistic quantum physics. The physical conditions of the Wightman
axioms are preserved but the condition that implies densely defined Hermitian fields, formal
Hermiticity, is removed. The newly constructed VEV in section 3.4 satisfy axioms that include
additional revisions from [30, 32, 36], section 3.2. A stronger cluster decomposition property
than the uniqueness of the vacuum condition used in [30, 32, 36] provides that truncated func-
tions [9] are connected functions and this stronger condition is included as an axiom. The
stronger cluster decomposition condition: provides a replacement for formal Hermiticity in
demonstrations that the quantum fields (3) are (non-Hermitian) Hilbert space operators; im-
plies that states with sufficiently isolated and space-like separated support are described by
free particles; provides the essential independence of the local observables of non-entangled,
spatially distant bodies; and implies a unique vacuum.



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 14

3 Constructions of relativistic quantum mechanics

In dealing with mathematical problems, specialization plays, as I believe, a still more
important part than generalization. Perhaps in most cases where we seek in vain the
answer to a question, the cause of the failure lies in the fact that problems simpler
and easier than the one in hand have been either not at all or incompletely solved.
All depends, then, on finding out these easier problems, and on solving them by
means of devices as perfect as possible and of concepts capable of generalization. –
David Hilbert, in Bulletin of the American Mathematical Society 8 (1902), 437-479.

VEV (5) that realize relativistic quantum physics are constructed in this section. These VEV
generalize the single neutral scalar field example (13) introduced in section 2. The function
sequences f that describe nature are elements of rigged Hilbert spaces HP . These Hilbert space
realizations of relativistic quantum physics are discussed in section 3.1. Prospective axioms A.1-
7 presented in section 3.2 characterize relativistic quantum physics. The well-established VEV
of relativistic free fields are discussed within the current context in section 3.3. Physically
nontrivial VEV are constructed in section 3.4 as cluster expansions of symmetric, connected
functions. Symmetry implements local commutativity, and connectivity implements cluster
decomposition. To implement relativity, the symmetric, connected VEV functions are Poincaré
covariant. Connected functions include free field VEV that characterize the elementary particles
and interaction follows from multiple argument connected functions. The support of the VEV
is limited to mass shells and Poincaré covariance provides that energy-momentum is conserved.
Satisfaction of the prospective axioms is demonstrated in sections 3.5.1-3.5.5. The basis spaces
P that imply nonnegative energies are discussed in section 3.7. Also in section 3.7, equivalence
with constructions based on the unconstrained S with positive energy support constrained
VEV is demonstrated. The approach based upon constrained functions P is emphasized below.
The Hamiltonian operator is evaluated in section 3.8. Scattering amplitudes are illustrated in
section 3.9. Additional properties of the constructions are developed in sections 3.8, 4, and 5,
and the appendices.

3.1 Quantum mechanical description of state

Key considerations for realization of relativistic quantum physics include:

1. functions are the description of nature. Functions over spacetime and quantum numbers
label elements of rigged Hilbert spaces, and the Fourier transforms of these functions
describe momenta

2. the Hamiltonian generates time translation. To comply with relativity, the Hamiltonian
must be a generator of a Hilbert space realization of the Poincaré group.
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In the classical concept, observables are classical dynamical variables. The classical concept in-
cludes an observer who can describe the evolution of each identifiable body. The description of
state is considered independently of observation, or perhaps more precisely, the state is consid-
ered determined and observation need not disturb that state. This geometric description with
an omniscient observer is what is meant by classical physics in these notes. Quantum mechan-
ics supersedes, not “quantizes,” classical descriptions. The quantum description of nature is
fundamentally incompatible with a classical description despite the often excellent approxima-
tion to quantum dynamics provided by classical dynamics. A description of nature as elements
of rigged Hilbert spaces manifests the wave-particle duality, and implements the discrete line
spectra of atomic emissions, the quantized energy of photons, the entanglement of states nec-
essary to consistent description of quantized conserved quantities, and the indistinguishability
of similarly described bodies that results in an extensive entropy. The quantum description is
fundamentally contradictory to classical concepts. Nevertheless, when the dominant supports
of state describing functions are well-represented by a single location and momentum, and iso-
lated, the description provided by the state describing function is classical particle-like. For
these particular state descriptions, there is a close correspondence of quantum and classical de-
scriptions, section 4. More generally, description is inherently quantum mechanical. For widely
supported states, or significantly overlapping descriptions, or when entanglement applies, or
when non-commuting observables are considered, or on small spatial scales, or for relativistic
collisions, classical description is contradicted. For finite mass particles, the scale for “small” is
generally set by the Compton wavelength (9). Trajectories for distinguishable bodies apply in
quantum mechanics only while a correspondence with classical bodies applies. The Heisenberg
uncertainty principle is characteristic of the quantum description of nature. The description
of state precludes classical description; states of nature are never classically described despite
the familiar and useful classical approximations. The intrinsic understanding of quantum me-
chanics is the relative state (Everett-Wheeler-Graham) interpretation, [11] and appendix 7.2.7.
The resulting description of observation explains how common perceptions of nature differ from
their description, and resolves the Einstein-Podolosky-Rosen (EPR) [16], Schrödinger’s cat [50]
and Wigner’s friend [63] paradoxes associated with earlier understandings of quantum mechan-
ics. Quantum mechanics contradicts classical description and in this sense the concepts are
disconcerting. But, quantum mechanics is necessitated by consistency with nature. The classi-
cal view is not supported by our broadened observations of nature. The classical description is
a perception facilitated by often excellent approximation. The correspondence of classical and
quantum descriptions of nature is discussed further in section 4.

3.1.1 States

The sequences of functions that describe nature are elements of a rigged Hilbert space. These
functions can depict the vacuum, a single particle, multiple particles, composite bodies, wave-
like states, and combinations. Perception of these states by observers and the temporal evolution
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of states are the concerns of mechanics. This Hilbert space description fulfills essential properties
of nature [13, 59] and is discussed in appendix 7.2.

The elements |f⟩ of the equipped or rigged Hilbert spaces of interest HP are within the
completion of elements described by terminating sequences of functions from the basis spaces
P [9, 10, 12, 55].

|f⟩ ∈ HP

is described by any one of an equivalence class of function sequences

f := (f0, f1(x1)1, f1(x1)2, . . . f1(x1)Nc , . . . fn((x)n)(κ)n
, . . .) (16)

with

1. f0 ∈ C the component of the state in the vacuum state characterized by the sequence

Ω := (1, 0, 0 . . .)

2. Nc functions f1(x)κ that describe single particle states with masses mκ, κ ∈ {1, 2, . . . Nc}

3. (Nc)
n functions fn((x)n)(κ)n

,

fn((x)n)1...11, fn((x)n)1...12, . . . fn((x)n)NcNc...Nc

in the n-argument subspace of HP , n ≥ 2. Generally, the fn((x)n)(κ)n
are not inter-

pretable as describing any determined number or species of particles. The functions
fn((x)n)(κ)n

describe n particles of determined species in the absence of significant inter-

action, for example, if the supportk of each argument is distantly space-like isolated from
the support of any other state describing function argument, or if the momentum support
is sufficiently nonrelativistic.

Each κj ∈ {1, 2, . . . Nc} labels one of Nc field components. The basis function spaces P are
subspaces (7) of the space of terminating sequences of Schwartz tempered functions S, section
3.7. P ⊂ S provides that S ′ ⊆ P ′ for the duals [20] but for the constructions, the constructed
VEV lie within S ′.

The labels on arguments generally do not identify particular bodies. Gibb’s paradox is
resolved by the indistinguishability of similarly described bodies. If the spatial supports of
each argument of the state describing functions fn((x)n)(κ)n

has the same mass, charge and
polarization, and overlap, the results of observation is not reliably associated with the support of

kThe support of a function is commonly defined as the set of points in the domain where the function is
not zero. Here, the dominant support of a function refers to finite volumes within the domain that include a
dominant contribution to the mean squared amplitude of the function. The dominant supports of interest are
discussed further in section 4.1. Relatively negligible mean squared amplitudes over finite volumes are taken as
zero to apply the more common definition of function support.



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 17

a single argument. Isolation of support enables association of a particular argument description
with a volume of space: the volume of space reliably associates with the support of an argument.
The association of classical particles with state describing functions is developed further in
setion 4. Indistinguishability is implemented as symmetry of the squared magnitude of the
scalar product with interchange of argument labels. If xk+1 − xk is space-like in the support
of fn((x)n)(κ)n

, then the state described by f(. . . xk+1, xk, . . .)(κ)n
is equivalent to the state

described by either ±f(. . . xk, xk+1, . . .)(κ)n
.l

To describe momentum, functions in the basis function spaces P are required to have Fourier
transforms. f̃n((p)n) denotes the Fourier transform of fn((x)n). The Fourier transform adopted
here applies in four-dimensional spacetime and is the evident multiple argument extension of

ψ̃(p) :=

∫
dx

(2π)2
e−ipxψ(x) (17)

using wavenumber p, energy-momentum P := ℏp, E = cP0 and the Lorentz invariants px =
p0ct − p · x and spacetime volume element dx = dx0dx1dx2dx3. ℏ is Planck’s constant h
divided by 2π. To describe relativity, spacetime coordinates in four dimensions are designated
x := (ct,x) and energy-momentum vectors are p := (E/(ℏc),p) and p := (px, py, pz). c is the
speed of light and px is without units. Px = ℏpx := Et−P·x. x, p ∈ R4 are Lorentz four-vectors
and x,p ∈ R3 are three-dimensional Euclidean vectors. x2 := (ct)2 − x2, p2 := (E/c)2 − p2

use the Minkowski signature. p · x is the dot product and x2 := x · x is the squared Euclidean
length. The units of spacetime coordinates are length, and wavenumbers p have the units of
inverse length. Mass m is in natural units and a relevant length associated with a mass m is
the reduced Compton wavelength λc from (9). The Fourier transforms of generalized functions
are defined [19] to satisfy Parseval’s equality

T̃ (ψ̃) := T (ψ). (18)

As a consequence and when applicable, the Fourier transforms of generalized functions are

T̃ (p) =

∫
dx

(2π)2
eipxT (x)

with the sign reversal of the exponent in the exponential function relative to (17). The Fourier
transform is invertible [47].

ψ(x) =

∫
dp

(2π)2
eipxψ̃(p).

lFor brevity, the possibility of parastatistics [9] is not included here.
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Among the properties of Fourier transforms are the Fourier transform pairs

ψ(Λ(x− a)) ↔ e−ipaψ̃(Λp)

dψ(x)

dx
↔ igpψ̃(p)

e−α∥x∥2 ↔ 1

4α2
e−∥p∥2/(4α)

(19)

with ∥x∥2 the Euclidean (sum of squares) length squared of the Lorentz four-vector x, for a
Lorentz transformation Λ, spacetime translation a, and complex α with ℜe(α) > 0. g is the
Minkowski signature,

gp := (p0,−p). (20)

The third property in (19) suggests that functions ψ(x) with broad spacetime support have
Fourier transforms with concentrated energy-momentum support, and vice versa. Indeed, in
general, the standard errors of |ψ(x)|2 in spacetime and of |ψ̃(p)|2 in energy-momenta considered
as probability distributions satisfy σxσp ≥ 1

2 in each dimension. σxσp ≥ 1
2 illustrates the

Heisenberg uncertainty principle discussed in appendix 7.7. More precise knowledge of the
location of a body implies degraded knowledge of the time rate of change of the location, and
this effect is more pronounced for low mass bodies than for heavy bodies due to ℏp = P ≈ mv
at nonrelativistic velocities v. Then

σxσv ≥
ℏ
2m

in each of the three dimensions.

3.1.2 The scalar product

The Hilbert spaces of interest have a complex scalar product, ⟨f |g⟩ ∈ C, for every pair of
elements |f⟩, |g⟩ ∈ HP described by function sequences f, g. The scalar product provides the
norm,

∥f∥ :=
√
⟨f |f⟩. (21)

To achieve Poincaré invariance of likelihoods and limit the support of states to nonnegative
energies, the degenerate scalar product is implemented with generalized functions

Wk,n−k((x)n)(κ)n
∈ S ′(R4n)
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[20]. The degenerate scalar product is

W(f∗, g) :=
∑
n,m

∑
(κ)n+m

Wn,m(f
∗
n,(κ)n

gm,(κ)n+1,n+m
)(κ)n+m

=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m (D·)nWn,m((x)n+m)(κ)n+m

×fn(xn, . . . x1)κn...κ1 gm(xn+1, . . . xn+m)(κ)n+1,n+m

(22)

with formal summation notation for generalized functions [19] in the last line. Each spacetime
Lorentz vector xk is summed over R4 and each κj ∈ N is summed from 1 to Nc, the number of
field components. The indices n and m are summed over the nonnegative integers, {0,∞}. The
VEV functionsWk,n−k((x)n)(κ)n

generalize the Wightman functionsWn((x)n)(κ)n
[9, 10, 55, 61].

Multiple arguments are denoted

(x)j,k := xj , xj+1, . . . xk ∈ R4(k−j+1)

in the ascending case, (x)j,k := xj , xj−1, . . . xk otherwise and (x)n := (x)1,n. The ∗-dual f∗ of
a function sequence f uses complex conjugation, argument transpositions, and the nonsingular
Nc ×Nc linear transformation D from (11). The ∗-dual functions are

f∗
n((x)n)(κ)n

:= (DT ·)nfn(xn, . . . x1)κn...κ1

using the matrix notation (12) and then the Fourier transformm of f∗
n((x)n)(κ)n

is (11). D,
designated here as Dirac conjugation, is determined by representation of the Lorentz subgroup
and satisfies

DD = INc (23)

with INc the Nc ×Nc identity and as a consequence, the ∗-dual satisfies

f∗∗ = f

(g × f)∗ = f∗ × g∗.

The linear space of function sequences P becomes an algebra with the ×-product (4). The
∗-dual would be an involution of the algebra of function sequences if it were an automorphism.
The ∗-dual maps S 7→ S but, the ∗-dual is not an automorphism for the P selected in the
constructions: P∗ ̸= P due to the nonnegativity constraint (14) on the energy support of the
elements of P(R4n). From the representation of the ∗-dual (11), P ∪P∗ ⊂ S but P ∩P∗ = {cΩ}
with c ∈ R and Ω the vacuum. Discussed in sections 2 and 3.7, the elements of P(R4n) have

m
∫
dx e−ipxψ(x) =

∫
dx eipxψ(x) = ψ̃(−p).
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zeros on the negative energy mass shells and the ∗-dual maps these zeros to positive energy
mass shells.

The sequence of generalized functions is denoted

W := (1,W1,0,W0,1, . . . ,Wn,0,Wn−1,1 . . . ,W0,n, . . .). (24)

The arguments of Wk,n−k are (x)n, (κ)n and similarly to (16), there are (Nc)
n functions in the

subsequenceWk,n−k distinguished by (κ)n. Each κj ∈ {1, Nc} and j ∈ {1, n}. The n arguments
of Wk,n−k are designated as k ∗-dual function and n− k function arguments.

The scalar product of HP results from the isometry

⟨f |g⟩ =W(f∗, g)

that associates elements of the Hilbert space with equivalence classes of function sequences [12].
Then the norm (21) is

∥f∥ = (W(f∗, f))1/2.

An abbreviated notation ⟨fn|gm⟩ is used for a scalar product when the constituent functions
fj = 0 for j ̸= n and gk = 0 when k ̸= m in function sequences f and g.

⟨fn|gm⟩ :=
∑
(κ)n+m

∫
d(x)n+m (D·)nWn,m((x)n+m)(κ)n+m

×fn(xn, . . . x1)κn...κ1 gm(xn+1, . . . xn+m)(κ)n+1,n+m
.

(25)

3.1.3 The quantum field and VEV

The quantum field derives from the expression (6) for the scalar product. This definition relates
the VEV functions Wk,n−k((x)n)(κ)n

and the VEV of the fields (6).
The quantum field is multiplication (4) in the algebra of function sequences. Hans-Jürgen

Borchers [10] definition is
Φ(f) g := f × g (26)

with f, g ∈ HP but in this note, the discussion of Φ(f) is limited to sequences f with only
the single argument functions f1(x)κ nonzero. Then, the quantum field consists of Nc field
components Φ(x)κ

Φ(f) :=

Nc∑
κ=1

Φ(fκ)κ

=

Nc∑
κ=1

∫
dx Φ(x)κf1(x)κ.
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with field component Φ(x)κ associated with mass mκ. Comparison of the scalar products (6)
and (22) identifies

(D·)kWk,n−k((x)n)(κ)n
:= ⟨Φ(xk)κk

. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1
. . .Φ(xn)κnΩ⟩ (27)

in the matrix notation (12).
If the multiplication (4) preserves Hilbert space norm-equivalence classes of function se-

quences, then the definition of field as multiplication of function sequences (26) elevates to
Hilbert space operators. In Wightman’s development [10, 55, 61], the basis function spaces
are the ∗-algebra of tempered functions S (totality W.b in section 3.2). Then, g∗ × h ∈ S for
g, h ∈ S and if the scalar product satisfies formal Hermiticity (Wk,n−k = Wn independently
of k, W.a in section 3.2), then the Cauchy-Schwarz-Bunyakovsky inequality demonstrates that
the field (26) preserves equivalence classes. But, neither a ∗-involutive algebra of function se-
quences nor formally Hermitian VEV are necessary to realize relativistic quantum physics. The
∗-dual (11) is not an involution of the algebra P used in this development, section 3.7 and
[32, 36]. Nevertheless, the constructed quantum fields are unbounded Hilbert space operators,
section 3.8. The constructed quantum fields are not Hermitian when physically nontrivial. In
physically trivial instances, the basis space P extends to S to realize Hermitian field operators.

If e were an eigenfunction sequence of the field, then for any sequence of single argument
functions f ∈ HP

|Φ(f)e⟩ = A(f)|e⟩

and A(f) =
∑

κ

∫
dx A(x)κf(x)κ. The A(x)κ are solutions to the canonically quantized classical

field equations and there would be an e for every A(x)κ. However, there are no eigenfunctions
of the quantum field (26). An eigenfunction would be labeled by a sequence (16) of functions
e such that

Φ(f) e = A(f) e.

With no vacuum polarization,

Φ(f) e = f × e

= (0, f
1
, 0, . . .)× (e0, e1, e2, e3 . . .)

= (0, f × e0, f × e1, f × e2 . . .)

= (A(f)e0, A(f)e1, A(f)e2, A(f)e3 . . .)

from the ×-product (4) and the definition of field (26) with en the sequence consisting of only
n-argument functions. If e describes an eigenfunction of Φ(f) with a finite eigenvalue A(f),
then A(f)e − f × e is a sequence in the null space of HP . Selection of the sequence of zeroes
to represent A(f)e− f × e results in the recursive A(f)en+1 = f

1
× en. Then A(f)e0 = 0 with

A(f) ̸= 0 provides that e = 0.
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3.1.4 Likelihoods: Born’s rule

Physical understanding and likelihoods of the perceptions of the state describing functions are
determined by Born’s rule. A separable Hilbert space has a denumerable basis of orthonormal
elements designated |eν⟩ here [3, 39]. These elements provide a resolution of the identity
operator in HP ,

I =
∑
ν

Qν

with projection operators
Qν := |eν⟩⟨eν |

in bra-ket notation. Then the expansion of any state in this selected basis is

|f⟩ =
∑
ν

⟨eν |f⟩ |eν⟩.

The projection operators Qν are the elementary propositions [6, 59] of observation and for nor-
malized states ∥f∥ = 1, the squared magnitudes |⟨eν |f⟩|2 of the coefficients are the likelihoods
that proposition ν is answered affirmatively. The elementary propositions are the queries “will
the state described by f be perceived as the state described by eν .” This identification of
likelihoods is Born’s rule.

Born’s rule provides that the likelihood of observing the state described by |g⟩ for a state
initially described by |ψ⟩ is the squared magnitude of the scalar product,

likelihood := |⟨g|ψ⟩|2 ≤ 1

for normalized state descriptions, ∥g∥ = ∥ψ∥ = 1. Born’s rule requires no additional assump-
tions for the forms or properties of operators to evaluate likelihoods: a scalar product and the
description (16) of states |f⟩ are inherent to the separable Hilbert space.

3.2 Axioms for the VEV of relativistic fields

Early study of mathematical structures that realize quantum physics includes studies by John
von Neumann, Rudolf Haag, Res Jost, Arthur Wightman, Léon van Hove, Nikolay Bogolubov,
Hans-Jürgen Borchers, Huzihiro Araki and Raphael Høegh-Krohn. Early studies did not iden-
tify structures that demonstrably realize nontrivial relativistic quantum physics [7, 8, 9]. Meth-
ods include the proposal of axioms to characterize general properties of relativistic quantum
physics. Axioms are used to define concepts, derive general results, and assess the consistency
of the axioms with additional assumptions. Significantly, the only realizations discovered for
the established prospective axioms for relativistic quantum physics are physically trivial. Es-
tablished axioms include the Wightman functional analytic axioms [9, 10, 55, 61], the G̊arding-
Wightman axioms for field operators [9, 55, 62], and the Haag-Kastler (Araki-Haag-Kastler)
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algebraic axioms for bounded, local Hermitian operators [9, 64, 65]. These axioms all consider
Hilbert space realizations in addition to Fock space but the realizations that have been con-
structed do not exhibit interaction. The realizations of relativistic quantum physics in section
3.4 and [30, 32, 36] satisfy a revision to the Wightman axioms that preserves the physical
characteristics and relaxes technical properties motivated by the canonical formalism.

From Born’s rule, the scalar products of function sequences determine state transition like-
lihoods and these likelihoods satisfy our observations. The scalar product (22) determines
likelihoods and follows from the VEV (27) given state descriptions (16). Seven prospective
axioms adapted from the Wightman functional analytic axioms [9, 10, 55, 61] and RQFT [60]
characterize the constructed realizations of relativistic quantum physics.

A.1) Regularity: the vacuum expectation values (VEV) of quantum fields are generalized func-
tions dual to the Schwartz tempered functions S. The VEV satisfy axioms A.2-7 in a
subspace P ⊆ S.

A.2) Nonnegativity: the state describing functions are elements of a Hilbert space HP . VEV
define (22) a degenerate scalar productW(g∗, f) for sequences of state describing functions
g, f ∈ P. The ∗-dual sequence (11) of any f ∈ P satisfies f∗ ∈ S.

A.3) Relativistic invariance: transition likelihoods are the same for all inertial observers. The
degenerate scalar product (22) is invariant to proper orthochronous Poincaré transforma-
tions of the state describing function sequences.

A.4) Spectral support: energy-momenta lie within the closed forward (nonnegative energy)
cone.

A.5) Local commutativity: field operators commute if not causally related and similarly de-
scribed particles are indistinguishable. The magnitudes of scalar products are invariant
with interchange of argument values in the state describing functions f if the argument
values are space-like separated.

A.6) Cluster decomposition: transition likelihoods for non-entangled, distantly space-like sep-
arated state descriptions are independent. The degenerate scalar product for functions
supported on distantly space-like separated volumes factors,

W(g1
∗ × g2∗, f1 × f2) −→W(g1

∗, f1)W(g2
∗, f2), (28)

as the supports of g1, f1 become arbitrarily distantly space-like separated from the sup-
ports of g2, f2.

A.7) Elemental stability: Neglecting any vacuum polarization, the vacuum and one particle
states are orthogonal to multiple argument states. ⟨g|Ω⟩ = 0 and ⟨g|Φ(f)Ω⟩ = 0 if g ∈ P
with g0 = g1(x)κ = 0, κ ∈ {1, Nc}.
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The notation is developed in section 3.1 and [10]. Axioms A.2-6 are designated here as the
physical conditions [30]. Regularity and nonnegativity imply that states are realized as elements
of a rigged Hilbert space and satisfaction of the physical conditions applies in the Hilbert space
HP based on function sequences P.

Given generalized functions Un,m that satisfy A.1-6, generalized functions Wn,m that also
satisfy A.7 follow from

W(f∗, f) := |f0|2 +W1,1(f
∗
1 , f1) + U((f−Sf)∗, f−Sf) (29)

with the shortened sequence Sf derived from f as Sf := (f0, f1(x)κ, 0, 0, . . .). W1,1 is a free
field two-point function, section 3.3. In (29), vacuum polarizations are asserted to vanish
without loss of generality: the addition of finite vacuum polarizations in section 3.4.5 preserve
satisfaction of the axioms. Satisfaction of A.1-6 is preserved in the transformation (29). The
decoupling of the contributions from the n ≥ 4, n-argument VEV in U from the two-point
function illustrates that with the revised axioms, a two-point function equal to the free field
two-point function no longer implies that the quantum field is a free field. Without densely
defined Hermitian field operators, that is, without VEV that satisfy the additional constraints of
formal Hermiticity W.a and totality W.b introduced below, the RQFT lemma [9] that provides
that the Pauli-Jordan function can be a two-point VEV only for a free field does not apply to
the constructions.

Using Born’s rule, all inertial observers perceive the same likelihood of events if the scalar
products are invariant to Poincaré transformations.

⟨(a,Λ)g|(a,Λ)f⟩ = ⟨g|f⟩, (30)

for Poincaré transformations

(a,Λ)fn((x)n)(κ)n
:= (S(A)T ·)nfn((Λ−1(x− a))n)(κ)n

(a,Λ)f̃n((p)n)(κ)n
=

n∏
k=1

e−ipka (S(A)T ·)nf̃n((Λ−1p)n)(κ)n

(31)

from the Fourier transform (17) with properties (19), with the matrix notation (12) and with
S(A) an Nc × Nc realization of the proper orthochronous Lorentz group. Λ is the proper or-
thochronous Lorentz transformation determined by A, and a ∈ R4 is a translation in spacetime.
The 4× 4 Λ from A ∈ SL(2,C) has components

Λjk =
1

2
Trace(σjAσkA

†) (32)

with σj designating one of the four Pauli spin matrices [9]. ΛT gΛ = g with g the Minkowski
signature matrix (20).
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In a nonrelativistic development, time is a universal parameter and many Hamiltonians are
compatible with the nonrelativistic scalar product [51] while in relativistic physics, time trans-
lations of states, and hence, the Hamiltonian, must comply with Poincaré invariance (30) of
likelihoods. With the Fourier transform (17) and Poincaré transformations (31), time transla-
tions by λ are

f̃n((p)n)(κ)n
→

n∏
j=1

e−ipj0λ f̃n((p)n)(κ)n

in the n-argument subspace of the momentum domain. A state describing function f(x0−λ,x)
evaluates the field at an advanced time.∫

dx Φ(x)f(x0 − λ,x) =
∫
dx Φ(x0 + λ,x)f(x).

Poincaré invariance provides that temporal translation is unitarily implemented,

U(λ)f((x)n)(κ)n
:= f((x0 − λ,x)n)(κ)n

. (33)

The Fourier transform (17) has properties (19), and as a consequence,

e−ipyf̃(p− q)) (34)

and
eiq(x−y)f(x− y) (35)

are a Fourier transform pair. The support for the function in (34) is translated from f(x)
in spacetime by y ∈ R4 and in energy-momentum by q ∈ R4. A change in sign of spatial
and momentum translations follows from the Minkowski signature in Lorentz vector products
px = p0x0 − p · x.

A.4 follows from the observation that energy-momenta Lorentz vectors lie within the closed
forward cone

V
+
:= {p : p2 ≥ 0 and p0 ≥ 0}.

If |p⟩ is a generalized eigenfunction of momentum with eigenvalue p, then for any state describing
function gk with k arguments,

⟨gk|p⟩ = 0

if p ̸= V
+
. As a consequence, Fourier transforms of the generalized functions

T̃n((p)n)(κ)n
:= W̃k,n−k((p)n)(κ)n

g̃∗
k((p)k)(κ)k

f̃n−k((p)k+1,n)(κ)k+1,n
(36)

are limited to E+n [9, 10, 55, 61]. Wk,n−k((x)n)(κ)n
are the VEV functions (27), gk ∈ P(R4k),

fn−k ∈ P(R4n−4k) and

E+n := {(p)n : pn ∈ V
+
, pn−1 + pn ∈ V

+
, . . . , p2 + . . . pn ∈ V

+
, p1 + p2 + . . . pn = 0}. (37)



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 26

The support limitation follows from spectral theory for rigged Hilbert space operators (theorem
1, appendix to section 4 [21], lemma 5.6.7 [39], chapters 7-10 [24]). The unitary spacetime
translation operator in HP is

U(a) =

∫
dE(p) e−ipa

with
dE(p) ∼ dp |p⟩⟨p|

a resolution of the identity in HP . Every p ∈ V
+
. Unitarity of U(a) follows from Poincaré

invariance A.3 of the scalar product and Hermiticity of the densely defined generators of trans-
lations, the energy-momentum, appendix 7.3 and Stone’s theorem. Translations of the fields
are

U(a)Φ(xj)κjU(a)−1 = Φ(xj + a)κj ,

and the vacuum is translation invariant.

U(a)Ω = Ω.

Then, translation of arguments ℓ though n is expressed

⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)ΦℓU(a)−1 . . . U(a)ΦnU(a)−1Ω⟩
= ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)Φℓ . . .ΦnΩ⟩

with an abbreviated notation for fields Φj := Φ(xj)κj . The scalar product (6) with functions
gn−k of translated support for arguments ℓ through n provides

F (q) :=

∫
da eiqa

∫
d(x)n ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)Φℓ . . .ΦnΩ⟩ fkgn−k

=

∫
da

∫
d(x)n

∫
eiqa−ipa⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1dE(p)Φℓ . . .ΦnΩ⟩ fkfn−k

= (2π)4
∫
d(x)n

∫
δ(q − p) ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1dE(p)Φℓ . . .ΦnΩ⟩ fkgn−k.

F (q) = 0 if q ̸∈ V
+

for each choice of n, k, ℓ and (κ)n from A.4 and the properties of the
translation operator U(a). From the equivalent expression (22) for scalar product, Parseval’s
equality (18) and the properties of Fourier transforms (19),

F (q) :=

∫
da eiqa

∫
d(x)n Wk,n−k((x)ℓ−1, (x+ a)ℓ,n)(κ)n

f∗
kgn−k

=

∫
da

∫
d(p)n e

iqa−i
∑n

j=ℓ pja W̃k,n−k((p)n)(κ)n
f̃∗
k g̃n−k

= (2π)4
∫
d(p)n δ(q −

∑n
j=ℓ pj) W̃k,n−k((p)n)(κ)n

f̃∗
k g̃n−k.
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Then, F (q) = 0 unless
n∑
j=ℓ

pj ∈ V
+

implies that the support of (36) includes only pj from E+n (37). Development follows similarly
for ℓ ≤ k from the sesquilinearity of the scalar product (6). As a consequence, to satisfy
the observation that all energy-momentum lie in the closed forward cone, the support of (36)
includes only pj from E+n .

In Wightman’s original axioms, the support of the functions f̃k, g̃n−k were not constrained
and as a consequence, the support of the VEV functions W̃k,n−k((p)n)(κ)n

was limited to E+n .
The supports of the constructed VEV are limited to mass shells and the supports of elements
of P(R4n) are limited to positive energies. Together, the joint support of VEV functions and
functions in P eliminates the negative energy mass shells and satisfies A.4 [32]. This develop-
ment enables joint satisfaction of local commutativity, positive energy support and Poincaré
covariance, an unmet and apparently unattainable task within RQFT developments when in-
teraction is manifest [4, 9, 30, 40]. Satisfaction of the physical conditions in a more constrained
function space (or equivalently, with VEV that do not satisfy formal Hermiticity) results in
the constructed physically nontrivial, locally commutative, positive energy, Poincaré covariant
tempered distribution-valued quantum fields.

Local commutativity is that linear combinations of VEV with transpositions of arguments
conditionally vanish.

⟨f |Φ1 . . . (ΦkΦk+1 ± Φk+1Φk) . . .ΦnΩ⟩ = 0

if the points xk and xk+1 are space-like, (xk − xk+1)
2 < 0, 1 ≤ k < n, and the notation is

abbreviated, Φk := Φ(xk)κk
. Space-like separations specify that the points in the supports of

the quantum fields are not causally related. The sign is determined by particle statistics to
satisfy normal commutation relations [9]. Verification of local commutativity uses functions
of bounded support with space-like separated support, for example, tempered test functions
S. Local commutativity applies for constructions based on the unconstrained basis function
space S, and in constructions based on P, local commutativity reduces to commutativity or
anticommutativity of the component field operators. The function spaces P ⊂ S lack functions
of bounded support and the constructed VEV exhibit unconditional split signed symmetry if
based upon P, section 3.4 and [30, 32]. For the realizations emphasized in these notes, A.5
can be tightened to unconditional split signed symmetry of VEV but to include the equiva-
lent, alternative development, section 3.7.2, for example, free field developments with the basis
function spaces extended to S, only conditional local commutativity is required in A.5 [30].
Inclusion of parastatistics [9] would extend this development.

Condition A.6 is another manifestation of causality: great spatial separation implies inde-
pendence of nonentangled local observables. A.6 is stronger than the condition used in [30,
32, 36] that was also designated as cluster decomposition. Earlier constructions in [30, 32, 36]
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satisfy formal Hermiticity described below. However, in section 3.4 it is illustrated that formal
Hermiticity conflicts with cluster decomposition A.6 in constructions with nonzero spin and in
some scalar field examples. Both conditions, A.6 or the cluster decomposition condition used
in [30, 32, 36], imply that the vacuum is the sole translation-invariant state. In common with
Wightman’s development, formal Hermiticity was maintained in [36] and resulted in truncated
functions that are not connected. In the earlier development that satisfied formal Hermiticity,
the strong cluster decomposition condition A.6 is not satisfied. The constructions in section 3.4
abandon formal Hermiticity to establish the causal cluster decomposition property A.6. Cluster
decomposition is a nonlinear condition and relates the description of interaction across orders
of the VEV.

Condition A.6 implies that: the vacuum |Ω⟩ is the only translationally invariant state [32,
55]; that states with sufficiently isolated and space-like separated support are described by free
particles, section 3.6; that the quantum field (26) elevates to Hilbert space operators, section
3.8; and the essential independence of the local observables of non-entangled, spatially distant
bodies, appendices 7.2.7 and 7.2.8.

For the statement of A.7 and in the example constructions, mean values of field components,
vacuum polarizations, ⟨Ω|Φ(x)κΩ⟩, are asserted to vanish without loss of generality. Mean
values of the boson field components are independently specified constants. Nonzero mean
values are introduced in section 3.4.5.

Condition A.7 provides an interpretation of states as free particles in appropriate instances
and results in satisfaction of regularity A.1. Condition A.7 together with A.6 and the selected
two-point functions provide that isolated and localized volumes of support of the state describing
functions are perceived as classical particles. This associates the quantum field with elementary
particles. Sufficiently isolated concentrations of support propagate as nearly free particles. The
masses of the elementary particles are the mκ associated with each field component Φ(x)κ
in the construction in section 3.4. A.7 provides satisfaction of nonnegativity A.2 together
with regularity A.1 for the constructions. However, satisfaction of A.7 is not necessary for
regularity. Regularity and nonnegativity require thatW0,n(f

∗
0 , fn) =W1,n(f

∗
1 , fn) = 0 for n ≥ 2

in the constructions, section 3.5.5. Satisfaction of formal Hermiticity precludes setting W0,n =
W1,n = 0 for n ≥ 2 but kinematic constraints can result in W0,n(f

∗
0 , fn) = W1,n(f

∗
1 , fn) = 0 if

f1 ∈ HP(R4) and fn ∈ HP(R4n) for nonzero W0,n and W1,n. Kinematic constraints include
conservation of energy-momentum and spin. For the realizations with only a single mass,
W0,n(f

∗
0 , fn) =W1,n(f

∗
1 , fn) = 0 if n ≥ 2 due to conservation of energy-momentum: neither the

vacuum nor a single particle can create a cascade of particles with each particle of the same
mass as the decaying particle.

Confined particles, those that do not appear with their support isolated from the support
of other arguments, have W1,1 = 0 for the κj included in their description. A |f0|2 term
(W0,0 = 1) is required in any construction that includes a vacuum state. Elemental stability
A.7 expresses that if a state is prepared with only one elementary particle, or together with A.6
that if one elementary particle is greatly isolated from the support of every other body, then the
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elementary particle is stable until it encounters another body. Whether or which elementary
particles are confined is not determined by the axiom and a discussion of confinement awaits
better understanding of bound states within the constructions. Confined species extends this
development.

Wightman’s original axioms [9, 10, 55, 61] are distinguished here by two additional con-
ditions.n Wightman’s axioms support the canonical formalism’s conjectured correspondence
that quantizes classical fields to Hermitian quantum field operators, Wightman’s prospective
axioms include assumptions that imply the fields in the VEV (5) are Hermitian Hilbert space
field operators:

W.a) Formal Hermiticity: the generalized functions that define the degenerate scalar product
(22) satisfy

Wk,n−k((x)n))(κ)n
=Wn((x)n))(κ)n

independently of k. In this case, the degenerate scalar product is

W(g∗, f) =W (g∗ × f)

for a Wightman functional W and the product (4).

W.b) Totality: P = S. Satisfaction of the axioms applies for all sequences of Schwartz tempered
functions.

Together with A.1-2, satisfaction of W.a and W.b implies that the field is realized as Hermi-
tian Hilbert space operators. Condition W.a results in the simplified form (10) for the scalar
product. Sequences of tempered functions S are a ∗-algebra for the product (4) and involu-
tion (11). However, satisfaction of both conditions W.a-b preclude the constructed nontrivial
realizations of relativistic quantum physics. Physically trivial examples, free fields, Wick poly-
nomials and generalized free fields, satisfy both W.a and W.b. Either, but not both W.a and
W.b can be satisfied by the physically nontrivial constructions in section 3.4. In section 3.7.2,
it is demonstrated that W.b can be satisfied if W.a is abandoned: with a non-Hermitian em-
bellishment to the VEV presented in section 3.4, the constructions can be based on S. In [30],
it is demonstrated that W.a can be satisfied for a physically nontrivial neutral scalar field if
W.b is abandoned. The departure from satisfaction of W.a-b admits the physically nontrivial
constructions.

The developments of nonrelativistic quantum-classical correspondences, section 4, and bound
states, section 5, suggest that a determination of VEV that satisfy axioms A.1-7 does not suffice
to select the description of nature: additional conditions are required to select the nonrelativistic
quantum-classical correspondences and bound states. The scattering amplitudes are determined

nThe conditions are not called out separately as axioms but formal Hermiticity and totality are assumed
within a statement of the axioms [9, 10, 55, 61].
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by the selection of VEV, but many distinct possibilities are included among bound states and
corresponding nonrelativistic classical descriptions.

The revised axioms A.1-7 for RQP result in substantial departures from established RQFT
results. Without densely defined Hermitian field operators, axioms A.1-7 are demonstrably
realizable, several RQFT “no go” results [9, 46] do not apply, and the RQFT demonstrations
of PCT and spin-statistics theorems [9, 55] require review to include the physically nontrivial
RQP constructions.

3.3 Relativistic free fields

3.3.1 Free field VEV

Free field VEV satisfy both the original Wightman axioms [9, 10, 55, 61] and the prospective
axioms A.1-7. Free field VEV functions describe elementary particles and are included in
the constructions. Also, the n ≥ 4, n-argument connected VEV functions that characterize
interactions are based on structures from the free field VEV functions. The physically trivial
free field VEV satisfy formal Hermiticity W.a and totality W.b.

Satisfaction of the Wightman axioms suffices to determine that the neutral scalar field two-
point function W2(x1, x2) is a Källén-Lehmann form, a summation over a mass spectrum of the
Pauli-Jordan function [53]. The two-point functions used in the constructions are extensions
of the Pauli-Jordan function to include non-zero spins. The two-point functions used in the
constructions have Fourier transforms

W̃2(p1, p2)κ1κ2 = δ(p1 + p2) δ
+
2 M(p2)κ1κ2

= δ(p1 + p2) δ
−
1 δ

+
2 2
√
ω1ω2 M(p2)κ1κ2

(38)

with
δ±
k := θ(±Ek)δ(p2k − λ−2

ck )

and λck is the reduced Compton wavelength (9) for mass mκk
. The supports of δ±

k are on
the positive (+) or negative (−) energy mass shells. A mass mκ is associated with each field
component Φ(x)κ. M(p2)κ1κ2 is an Nc ×Nc array of functions of the energy-momentum p2.

The free field VEV satisfy formal Hermiticity W.a and totality W.b. The properties of
the free field VEV suffice to imply that the quantum field (26) is a densely defined Hermitian
Hilbert space operator and indeed, the VEV generate algebraically from the Hermitian field
operator

Φo(f)κ = Φ+
o (f)κ +Φ−

o (f)κ

with creation and annihilation components that have commutation relations

[Φ−
o (f1)κ1 ,Φ

+
o (f2)κ2 ]± =W2(f1 f2)κ1κ2
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and otherwise commute, and there is a cyclic vacuum state |Ωo⟩ with

⟨Ωo| . . .Φ−
o (f)κΩo⟩ = 0

[23, 24, 51, 60]. The notation is that Φ+
o is the creation and Φ−

o is the annihilation component.
Whether the commutator or anti-commutator is used depends on the values of κ1, κ2 that
determine the statistics type of the field component, boson or fermion, as specified below in
(42). In this algebraic evaluation of VEV, each fj ∈ S(R4) [30]. From (27), the VEV functions
and VEV of the field operators are related

(D·)kFk,n−k((x)n)(κ)n
:= ⟨Φo(xk)κk

. . .Φo(x1)κ1Ω|Φo(xk+1)κk+1
. . .Φo(xn)κnΩ⟩.

Contrast of the two representations for the scalar product (6) and (22) with the definition of
an adjoint operator, and condition (23) provide that

Φo(xj)
∗
κj

= DΦo(xj)κj

and

Fk,2n−k((x)n)(κ)n
=
∑
pairs

σ(S, (κ)n)
n∏
j=1

W2(xij , xℓj )κij
κℓj

(39)

with D from (11), and in the matrix notation (12). Fk,2n−k((x)n)(κ)n
is the result of the

algebraic evaluations for the VEV of the free field and the summation is over all (2n)!/(2nn!)
ways of pairing the indices ij , ℓj ∈ {1, 2n} without regard to order and the indices are ordered
ij < ℓj within W2(xij , xℓj )κij

κℓj
. The sign of each term σ(S, (κ)n) = ±1 is determined by

particle statistics from the types of the indices (κ)n. The σ(S, (κ)n) are positive if all indices
(κ)n are boson indices; fermions introduce sign changes from the anti-commutation of Φo(xj)

±
κj

that achieve the pairing of indices S = {(i1, ℓ1), . . . (in, ℓn)}. The Fk,n−k((x)n)(κ)n
with an odd

number of arguments n are zero. F0,0 = 1.
The array M(p)κ1κ2 in the two-point function (38) is used to construct the n-point con-

nected functions. The elements of the Nc×Nc array M(p)κ1κ2 are multinomials in the energy-
momentum components [9] and in matrix notation, the array satisfies

DM(p) = C†(p)C(p) (40)

with D the Dirac conjugation matrix from (11) and C†(p) is the Hermitian transpose of C(p).
The matrix nonnegativity [26] of DM(p) provides the degenerate scalar product (22) [36]. Since
DM(p) is a nonnegative matrix, it is Hermitian and it follows from the condition (23) for D
that

M(p)† = DM(p)DT . (41)
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Local commutativity A.5 is satisfied if the M(p) are (real orthogonal) permutation matrix
similar to a direct sum decomposition into two components,

OM(p)OT =

(
M1(p) 0

0 M2(p)

)
, (42)

that satisfy locality conditions
Mj(p)

T = ±Mj(−p). (43)

The + sign applies for the boson constituent M1(p) and the − sign applies for the fermion
constituentM2(p). (42) assigns a type, boson or fermion, to the value of each index κj ∈ {1, Nc}
for each j. From (42), the array M(p) and consequently W2 vanishes unless both indices κ1, κ2
are the same type, boson or fermion. Poincaré invariance of the scalar product is implied by
two additional conditions on M(p) and D.

S(A)M(p)S(A)T =M(Λ−1p)

S(A)D = DS(A)
(44)

with S(A) an Nc × Nc realization of the proper orthochronous Lorentz subgroup (31). A ∈
SL(2,C), the group of determinant one, complex matrices. Poincaré invariance is demonstrated
in section 3.5.3. ExampleM(p), D and S(A) that satisfy (23), (40), (43) and (44) are illustrated
in section 3.3.2.
F exhibits local commutativity. Condition (43) implies commutation or anti-commutation

of free field components. The two-point function (38), the Fourier transform convention (17),
and translation invariance of the VEV express the local commutativity condition for free fields
as

⟨Ω| (Φo(x)κ1Φo(0)κ2 ∓ Φo(0)κ2Φo(x)κ1) Ω⟩ =

∫
dp δ+(p)

(
e−ipxM(p)κ1κ2 ∓ eipxM(p)κ2κ1

)
=

∫
dp e−ipx (δ+(p)M(p)κ1κ2∓δ−(p)M(−p)κ2κ1)

=

∫
dp e−ipxM(p)κ1κ2 (δ

+(p)− δ−(p))

=M(i ddx)κ1κ2

∫
dp e−ipx (δ+(p)− δ−(p))

with x := x1− x2 and p := p2, after reflection of the summation variable p 7→ −p in the second
term, substitution of (43), and the properties of the Fourier transform (19) applied to the
elements of the arrayM(p) that are multinomials in the components of p. If x2 < 0, then there is
a Lorentz transformation Λ with Λx = −x and as a consequence, the Pauli-Jordan commutator
function vanishes for space-like x. It then follows that the commutator/anti-commutator of free
field components generally vanishes for space-like x. This local commutativity is satisfied for
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functions from S. S includes functions with bounded support. P ⊂ S but P includes none of
the functions with bounded support.

If f(x) ∈ HP , then f(x) is supported only on positive energies for energy-momenta on the
mass shell, and Φo(f)κ = Φ+

o (f)κ and Φo(f
∗)κ = Φ−

o (f
∗)κ. As a consequence, if gk, fn−k ∈ P,

the only contributions Fk,n−k(g
∗
k fn−k) to scalar products are from

(D·)kFk,k((x)2k)(κ)2k
=
∑
S

σ(S, (κ)2k)
k∏
j=1

W2(xj , xij )κjκij
. (45)

The summation
∑

S includes the k! distinct pairings j, ij with j ∈ {1, k} and ij ∈ {k + 1, 2k}.
The scalar product (6) and definition (39) provide that σ(So, (κ)2k) = 1 for the pairing

So = {k, k − 1, . . . 1, k + 1, k + 2, . . . 2k}.

For f ∈ P ⊂ S, only k! of the (2k)!/(2kk!) terms for n = 2k in (39) contribute to the free
field VEV: terms in evaluations of the scalar product (22) that include two-point function
argument pairings with a second argument from {1, k} or a first argument from {k + 1, 2k} do
not contribute. For the two-point function (38) and scalar product (22), and because functions
in HP lack support on the negative energy mass shells,

W2(f
∗ g∗)κ1κ2 =W2(f g)κ1κ2 =W2(f g

∗)κ1κ2 = 0

and only W2(f
∗ g)κ1κ2 contributes if f, g ∈ HP(R4). These properties of the free field VEV

for function sequences P provide that F exhibits an unconditional signed symmetry, (49) in
section 3.4.2, that satisfies local commutativity A.5.

It is well-established [9, 55] that the sesquilinear form (22) defines a degenerate scalar
product for function sequences from S with free field VEV (39). P ⊂ S. The methods of this
construction provide another demonstration of the nonnegativity of (22) for function sequences
from P with free field VEV (39). The cluster expansion (69) introduced below in section 3.4.4
establishes that

F = exp ◦(CF)

= I+ CF + . . .+ 1
n!
CF ◦ CF ◦ . . . ◦ CF + . . .

with the sequence
CF = (0, 0,W2, 0, . . .).

Then, identifying that positively weighted linear combinations of VEV function sequences are
nonnegative if the terms are individually nonnegative, and that ◦-products preserve the non-
negativity of individually nonnegative, signed symmetric VEV sequences, section 3.5.1, demon-
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strates the nonnegativity of F if
∑

κ1,κ2
W2(f

∗
κ1 fκ2) ≥ 0. This is manifestly nonnegative,

∑
κ1,κ2

W2(f
∗
κ1 fκ2) =

∑
ℓ

∫
dp δ+(p)

∣∣∣∣∣∑
κ

Cℓκf̃(p)κ

∣∣∣∣∣
2

≥ 0

from the Parseval equality definition of the Fourier transform of generalized functions, the two-
point function (38), the ∗-dual sequences (11), the nonnegativity (40) of the matrix DM and
simplification.

The free field VEV (45) result in scattering amplitudes with particle number conserved,
and incoming and outgoing momenta equal in pairs, that is, no exhibition of interaction. Con-
structed from the two-point function (38) and the basis function space S, the free fields Φo(f)
(26) are Hermitian Hilbert space operators that realize the Wightman and G̊arding-Wightman
axioms [9, 10, 55, 61]. Constructed from (38) and the basis function spaces P, the free fields
Φo(f) are not Hermitian operators but an available extension of the basis function spaces to S
achieves Hermitian field operators for the free field [30]. Hermitian Hilbert space field operators
appear to be peculiar to physically trivial realization. Physically trivial relativistic realizations
include generalized free and Wick polynomial (monomial) fields [9, 55].

3.3.2 Example M(p), S(A) and D

Realizations of free fields are available in [7, 9, 22, 23, 24, 51, 60]. These realizations provide
Dirac conjugation D and two-point function arrays M(p) with a realization of the Lorentz
subgroup S(A), A ∈ SL(2,C). These Nc × Nc matrices D,M(p), S(A) satisfy (23), (40), (43)
and (44).

A neutral scalar field is realized by M(p) = S(A) = D = 1, the scalar realization of the
Lorentz subgroup. A charged scalar field is realized with two component fields (Nc = 2) with
S(A) := I2, the 2× 2 identity, and

D :=

(
0 1
1 0

)
M(p) :=

(
0 1
1 0

)
=M(−p)T .

This field has a symmetry associated with a charge, SϕM(p)STϕ =M(p).

Sϕ :=

(
eiϕ 0
0 e−iϕ

)
and DSϕ = SϕD.
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A massive vector boson field is realized with four component fields (Nc = 4). This spin-1
boson field uses a real 4× 4 representation of the Lorentz subgroup.

D := I4
S(A) := Λ

M(p)jk :=
p(j)p(k)
m2 − gjk

= C†(p)C(p).

p := (p(0), p(1), p(2), p(3)) and parentheses were used to distinguish energy-momentum vector
components from energy-momentum vectors pj . g is the 4×4 Minkowski signature matrix (20)
and Λ is a Lorentz transformation determined by A ∈ SL(2,C) in (32). M(p) = M(−p)T . In
four dimensions with p := (p0, px, py, pz),

C†(p) =



√
p20−m2

m 0 0 0

p0
m

px√
p20−m2

√
p2y+p

2
z

p20−m2 0 0

p0
m

py√
p20−m2

−pxpy√
(p2y+p

2
z)(p

2
0−m2)

pz√
p2y+p

2
z

0

p0
m

pz√
p20−m2

−pxpz√
(p2y+p

2
z)(p

2
0−m2)

−py√
p2y+p

2
z

0


with m a shorthand for the inverse of the Compton wavelength mc/ℏ.

A massive spinor fermion field is also realized with four component fields (Nc = 4). This
spin-1/2 fermion field uses a 4× 4 complex representation of the Lorentz subgroup.

D :=

(
0 I2
I2 0

)

S(A) :=

(
A 0

0 A

)

M(p) :=

(
0 B(p)

B(p)T 0

)

B(p) :=

(
p0 + pz px + ipy

px − ipy p0 − pz

)

with 2× 2 B(p) = B(p)†, I2 and A ∈ SL(2,C). M(−p) = −M(p)T .

DM(p) = C†(p)C(p) =

(
cT (p) 0
0 c†(p)

)(
c(p) 0
0 c(p)

)
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is a nonnegative matrix for p := (p0, px, py, pz) within the forward cone and

c(p) =

 √p0 + pz
px+ipy√
p0+pz

0 m√
p0+pz

 .

This field also has a symmetry SϕM(p)STϕ =M(p) associated with a charge,

Sϕ :=

(
ϕ 0

0 ϕ

)
ϕ :=

(
eiϕ 0
0 eiϕ

)
and DSϕ = SϕD.

Real (O = O) and imaginary (O = −O) orthogonal (OT = O−1) similarity transforms
OM(p)OT , OS(A)OT , ODOT preserve satisfaction of (23), (40), (43) and (44). Compositions of
these example and additional representations ofM(p), S(A), D, and subrepresentations provide
a rich class of realizations of relativistic quantum physics.

3.4 Nontrivial relativistic fields

VEV that exhibit nontrivial relativistic physics are displayed in this section. The construction
generalizes the scalar example (13). The constructed VEV are cluster expansions of split signed
symmetric, connected VEV functions CW. The VEV satisfy properties A.1-7 and have forms
suggested by earlier studies [2, 38] and by Feynman series [30, 34].

From the definition of scalar product (22) and field (26), the VEV are generalized functions
(27) designated

⟨Φ(xk)κk
. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1

. . .Φ(xn)κnΩ⟩ = (D·)kWk,n−k((x)n)(κ)n

with Dirac conjugation D introduced in the ∗-dual of function sequences (11). The matrix
notation (12) applies.

3.4.1 Connected functions

Connected functions include the two-point functions (38) of free fields and four or more argu-
ment connected functions illustrated by (13).

A connected function, CWk,n−k((x)n)(κ)n
, attenuates with great space-like separation of its

arguments. A connected function does not significantly contribute to scalar products if the
support of fn((x)n) ∈ S(R4n) consists of two greatly space-like separated volumes. That is,
CWk,n−k((x)n)(κ)n

is connected if

lim
ρ→∞

CWk,n−k(fn(ρ))(κ)n
= 0 (46)
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with
fn(ρ) := fn(x1, . . . xj , xj+1 − ρa, . . . , xn − ρa).

The Lorentz vector a is space-like (a2 < 0), ρ ∈ R, and 1 ≤ j < n. (46) applies for all (Nc)
n

components labeled by the κj . In a scalar product (22),

fn((x)n) = h∗
k(((x)k)gn−k((x)k+1,n) ∈ S(R4n)

with hk ∈ HP(R4k) and gn−k ∈ HP(R4(n−k)).
In the constructions, the connected functions are

CW1,1(x1, x2)κ1κ2 :=W2(x1, x2)κ1κ2
CW̃k,n−k((p)n)(κ)n

:= cnδ(p1 + . . . pn) Qk,n−k((p)n)(κ)n

(47)

with 2 ≤ k ≤ n − 2, n ≥ 4 and n = 2ℓ for ℓ ∈ N. W2 is a free field two-point function (38)
from section 3.3, and the elements of the Lorentz covariant array Qk,2n−k are products of delta
functions supported on mass shells for finite masses mκ and functions of the energy-momenta.
Qk,2n−k is constructed in (56), section 3.4.3. To satisfy Lorentz covariance A.3 for nonzero
spins, odd orders of the VEV vanish.

CWk,2ℓ−1−k((x)2ℓ−1)(κ)2ℓ−1
:= 0

for all k. To satisfy elemental stability A.7,

CW0,k =
CWk,0 =

CW1,k =
CWk,1 = 0

for k ≥ 3 and
W0,2 =W2,0 = 0

evaluated for functions from P and for all κj . For the initial construction, the field component
means (vacuum polarizations) are set to zero,

W1,0 =W0,1 = 0,

for all field components κ without loss of generality since nonzero means are independently
assigned, section 3.4.5. The remaining VEV is

W0,0 := 1,

the normalization of the vacuum. In these examples, elementary particles are created or anni-
hilated in pairs although more generally, odd order VEV need not vanish in developments that
include scalar fields [30, 32].
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If the Qk,2n−k((p)2n)(κ)2n
in (47) are locally absolutely summable, polynomial growth func-

tions of the momenta pk over the dmain summed in scalar products (22) and after evaluation of
the mass shell delta functions (each pk0 = ±ωk, and if regularity A.1 is satisfied, section 3.5.5,
then the functions (47) are connected. Due to translation invariance and after evaluation of the
mass shell delta functions, (46) includes a factor exp(iρa · (p1 + . . .pk)) with 1 ≤ k < n − 1.
Then, the Riemann-Lebesgue lemma and Poincaré invariance of scalar products demonstrate
(46).

3.4.2 Split symmetric functions

The constructed VEV are split signed symmetric. The VEV functions Wk,n−k((x)n)(κ)n
are

signed symmetric with transpositions among either the k ∗-dual function arguments, or trans-
positions among the n−k function arguments. If fields are not necessarily Hermitian operators,
then no symmetry of the VEV with transposition of ∗-dual and function arguments is necessary.
Local commutativity A.5 follows from signed symmetry of the VEV functions. Argument type,
∗-dual or function, follows from the degenerate scalar product (22).

A convenient shorthand notation for VEV is to designate

Wk,n−k(A) :=Wk,n−k((x)A)(κ)A
(48)

for a set of n arguments with indices designated A = i1, . . . in. That is, (x)A := xi1 , . . . xin and
similarly (κ)A := κi1 , . . . κin .

In the notation (48), a sequence (24) of generalized functions V is designated split signed
symmetric if the elements satisfy

Vk,n−k(π2(π1({1, n}))) = σ(π1, (κ)n)σ(π2, (κ)n)Vk,n−k({1, n}) (49)

for every k, n. π1({1, n}) represents one of the k! permutations of a sequence {1, k} of ∗-
dual function arguments. π2({1, n}) represents one of the (n−k)! permutations of the sequence
{k+1, n} of function arguments. The sequences {1, k} and {k+1, n} are within the sequence of
n elements {1, n}. The π1({1, n}) are limited to permutations of the ∗-dual function arguments
and the π2({1, n}) are limited to permutations of the function arguments. In a notation with
permutations denoted

πν(A) := πν(i1), πν(i2), . . . πν(in),

and ν = 1, 2,

π1({1, n}) = π1(1), π1(2) . . . π1(k), k + 1, k + 2, . . . n

π2({1, n}) = 1, 2, . . . k, π2(k + 1), π2(k + 2) . . . π2(n).

The signs σ(πν , (κ)n) = ±1 are assigned to each permutation to satisfy local commutativity
A.5 with normal commutation relations [9].

σ(π1, (κ)n) = 1 if π1({1, n}) = {1, n}
σ(π2, (κ)n) = 1 if π2({1, n}) = {1, n}.
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and
σ(π′

ν , (κ)n) = −σ(πν , (κ)n)

if the permutations π′
ν and πν differ by one transposition of two adjacent fermion indices, and

σ(π′
ν , (κ)n) = σ(πν , (κ)n),

if the one transposition is either two adjacent boson indices or transposition of a boson with
an adjacent fermion index. ν = 1, 2. In (42) of section 3.3, arguments xj , κj are assigned as
boson or fermion by the value of κj ∈ {1, Nc}. The sign associated with an ordering of indices
A = i1, i2, . . . in = π2(π1(Ao)) is with respect to a reference order Ao := j1, j2, . . . jn. The sign
for an A with respect to Ao is accumulated over the sequence of adjacent index transpositions
that result in the index order A starting from Ao. The sign is determined by the product
of signs from the sequence of transpositions, and the sign is independent of the choice for a
sequence of transpositions that result in A from Ao [9].

The signed symmetrization V of a sequence (24) of generalized functions v is

Vk,n−k(Ao) :=
∑
π1

σ(π1, (κ)Ao)

(∑
π2

σ(π2, (κ)Ao) vk,n−k(π2(π1(Ao)))

)
. (50)

The summations
∑

π1
and

∑
π2

include all k! permutations of the indices labeled {1, k} and all
(n− k)! permutations of the indices labeled {k+ 1, n}, respectively. The V constructed from a
generalized function v in (50) is split signed symmetric.

The free field VEV are split signed symmetric for function sequences from P. The expression
(45) for F is equivalent to

Fk,k({1, 2k}) =
∑
π1

σ(π1, (κ)n)

∑
π2

σ(π2, (κ)n)
1

k!

k∏
j=1

W2(xj , x2k+1−j)κjκk+j

 .

From the vanishing of two-point functions with indices of distinct type (42), the pair of indices
of each contributing two-point function are necessarily the same type, and since n = 2k, trans-
positions among the last k indices are redundant with transpositions among the first k indices.
The factor k! compensates for the redundant transpositions.

If w provides a degenerate scalar product, then its signed symmetrization W also provides
a degenerate scalar product since

W(f∗, f) = w(g∗, g) ≥ 0 (51)

with
g = (f0, f1, . . .

∑
π1

σ(π1, (κ)n)fk(π1({1, k})), . . .)
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from (50) for the scalar product (22).
If V provides a degenerate scalar product, then a scaled sequence of functions Va generated

from V as
Va := (|a0|2, a1a0V1,0, . . . akan−kVk,n−k, . . .), (52)

also provides a degenerate scalar product. Each ak ∈ C and |ak| ≠ 0. That Va(f∗, f) ≥ 0
follows from V(g∗, g) ≥ 0 by setting the sequence f = (g0/a0, g1/a1, . . .) ∈ P in the scalar
product (22).

3.4.3 VEV functions that exhibit interaction

Connected n ≥ 4, n-argument VEV functions introduce interaction to the RQP construction.
These connected functions characterize the interactions.

The n ≥ 4, n-argument connected functions are conveniently distinguished with the desig-
nation CU .

CUk,n−k((x)n)(κ)n
:= CWk,n−k((x)n)(κ)n

if n ≥ 4 (53)

with CWk,n−k((x)n)(κ)n
from the designation of connected functions (47) and the CUk,n−k are

zero for n < 4. From (47), the Fourier transforms of the connected functions are

C Ũk,n−k((p)n)(κ)n
:= cnδ(p1 + . . . pn) Qk,n−k((p)n)(κ)n

.

These Qk,2n−k((p)2n)(κ)2n
are Lorentz covariant, supported solely on mass shells, and consist of

summations with nonnegative weight of factors common across orders k, n analogously to the
factors of positive matrices [26]. Energy-momentum conservation provides translation invari-
ance of the scalar product (22), and common factors result in Lorentz covariance.

By construction and developed below, the connected CUk,n−k are split signed symmetric
(49) and nonnegative,

CU(f∗, f) ≥ 0

in the notation (22). With the substitutions,

δ(p1 + . . . pn) =

∫
du

(2π)4

n∏
j=1

e−ipju

and

cn :=

∫
dσ(λ) λn, (54)

the Fourier transforms of the CUk,2n−k((x)2n)(κ)2n
are

C Ũk,2n−k({1, 2n}) :=
∫∫

dσ(λ)
du

(2π)4
λ2n

2n∏
j=1

e−ipju Qk,2n−k((p)2n)(κ)2n
(55)
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using the shorthand notation (48). The summation du is over R4 and dσ(λ) is a summation
with nonnegative weight over R. Then c2n ≥ 0. For example, cn = ρn for dσ(λ) = δ(λ− ρ)dλ,
or cn = n!/ρn+1 for dσ(λ) = θ(λ) exp(−ρλ)dλ with 0 < ρ ∈ R.

The Qk,n−k((p)n)(κ)n
are split signed symmetric (50).

Qk,n−k((p)n)(κ)n
:=
∑
π2

σ(π2, (κ)n)

(∑
π1

σ(π1, (κ)n) qk,n−k(π2(π1({1, n})))

)

qk,n−k((p)n)(κ)n
:=

n∏
j=1

(
δ(p2j − λ

−2
cj )

d

dρj

)
exp(

∑
a,b∈Jk,n

ρaρbh(pa, pb)κaκb
)

(56)

and the qk,n−k((p)n)(κ)n
are evaluated for (ρ)n = 0 after the differentiations. The (ρ)n ∈ Rn are

independent parameters. Justified in section 3.5.5 below, the delta function factors are treated
as constant factors in the expression (56) of Qk,n−k((p)n)(κ)n

. The qk,n−k((p)n)(κ)n
determining

Qk,n−k((p)n)(κ)n
is selected to factor CUk,n−k((x)n)(κ)n

and implement nonnegativity of the
scalar product (22). The λcj are Compton wavelengths (9) determined by the finite, elementary
particle masses mκj . To comply with elemental stability A.7,

Qk,2n−k({1, 2n}) := 0 if k = 0, 1, 2n− 1, 2n.

Justified in the construction (29), CUk,n−k is limited to n ≥ 4 to eliminate a divergent two-
point function that would result from extrapolation of (56) to n = 2. The qk,n−k((p)n)(κ)n

is a
function of products of pairs ρaρb with a ̸= b and as a consequence of evaluation at (ρ)n = 0,
odd order connected functions are zero.

Qk,2n+1−k({1, 2n+ 1}) = 0.

The summations over argument transpositions π1 and π2 are described in section 3.4.2. Split
signed symmetry (49) of CUk,n−k({1, 2n}) follows from the symmetry of Qk,n−k((p)n)(κ)n

. The
summation a, b ∈ Jk,n with a, b ∈ {1, n} ⊂ N is defined below in (59). There is significant
freedom in selection of this Jk,n summation that determines the description of interaction. The
Nc ×Nc array of functions over the energy-momenta includes

h(pa, pb)κaκb
:=



B(αopa + pb)κaκb
if a, b ∈ {k + 1, n}

B(pa + αopb)κaκb
if a, b ∈ {1, k}

Υ(−pa + pb)κaκb
if a ∈ {1, k}, b ∈ {k + 1, n}

0 if a ∈ {k + 1, n}, b ∈ {1, k}.

(57)

Considered as matrices, h = B if arguments (pa, κa) and (pb, κb) are both ∗-dual function
arguments or if both are function arguments, and h = Υ or zero if the arguments are split, one
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from a ∗-dual function and one from a function. The indices a, b of ∗-dual function arguments
are elements of {1, k}, and the indices a, b of function arguments are elements of {k + 1, n} in
(56). αo ≥ 0 is a nonnegative real parameter that determines dynamics. Addressed in section
3.5.5, this form for h(p1, p2) satisfies regularity A.1 with nonconstant h(p1, p2). Due to Lorentz
covariance, nonconstant h(p1, p2) are necessarily singular and (57) is selected to exclude the
singularities from E+n , the region (37) of joint support of C Ũk,n−k((p)n)(κ)n

and state describing
functions from P in evaluations of the scalar product (22). The matrices B(p) and Υ(p) in (57)
are Fourier or Laplace transforms of the array M(p) from the two-point connected function
(47) with (38).

B(p) :=

∫
dµB(s) e

ispM(s)

Υ(p) :=

∫
dµΥ(s) e

−spM(s)
(58)

with s ∈ R4, dµB(s) and dµΥ(s) are real-valued Lorentz invariant measures, dµΥ(s) is a nonneg-
ative measure, and sp = s0p0−s ·p is a Lorentz invariant. The selection (58) for B(p) and Υ(p)
determined by M(p) ensures Lorentz covariance and nonnegativity of the constructed VEV.
The evaluation of Q2,2((p)4)(κ)4 in terms of the constituents B(p) and Υ(p) of the matrix h(p)
is illustrated in appendix 7.8. Q2,2((p)4)(κ)4 provides the boson scattering, fermion scattering,
fermion pair production from bosons, fermion pair annihilation to bosons, and fermion-boson
scattering amplitudes.

Like M(p), the h(pa, pb)κaκb
determined in (57) and (58) are zero if κa and κb are distinct

index types, a fermion with a boson index.
The constructed CUk,n−k((x)n)(κ)n

factor. A factorization follows from the factorization (40)

of M(p) in (58), DM(p) = C†(p)C(p), and the descrimination of factors in (57). Considering
factors of D from ∗-dual functions (11), three sets of factors are distinguished to determine
(56).

(D·)k exp(
∑

a,b∈Jk,n

ρaρbhκaκb
) := exp(

k∑
b1>a1=1

ρa1ρb1(DB(pa1+αopb1)D
T )κa1κb1

)

× exp(

n∑
b2>a2=k+1

ρa2ρb2B(αopa1+pb1)κa2κb2
)

× exp(

∑k,nג
ℓ=1

ρk+1−ℓρk+ℓ(DΥ(−pk+1−ℓ+pk+ℓ)κk+1−ℓκk+ℓ
).

(59)

∑k
b>a=1 designates

∑k−1
a=1

∑k
b=a+1. The limit on the third summation is

k,nג = min(k, n+1−k).
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(59) determines the summation a, b ∈ Jk,n in (56). Additional forms for Qk,2n−k((p)2n)(κ)2n
also

provide realizations that satisfy A.1-7. The summation over Jk,n, cn, αo and the symmetrization
(50) determine the description of interaction.

The upper limit in the summation to k,nג in (59) can be extended arbitrarily. With the
convention that terms with ρj for any integer j are included formally, the additional terms
are set to zero after the differentiations with respect to (ρ)n indicated in (56). Only terms
generated by differentiations with ρj ∈ {ρ1, ρ2, . . . ρn} contribute. The additional terms from
setting k,nג → ∞ in (59) do not contribute to the connected VEV functions. A limit on the
summation independent of k, n simplifies demonstration of the nonnegativity of scalar products
in section 3.5.2.

Demonstration that the construction (55) with (56), (57), (58) and (59) of the connected
VEV functions CU satisfies A.1-7 is in section 3.5. The construction provides example physically
nontrivial connected functions CU .

3.4.4 Cluster expansion of VEV

Cluster expansions compose connected functions (47) into VEV (27) and realize A.6. The
connected functions are from sections 3.3 and 3.4.3.

Cluster expansion is illustrated by the two- and four-point VEV functions. If the permuta-
tion matrix O in (42) is the identity, with designations B for the boson and F for the fermion
blocks of the block diagonal CW1,1, and in the abbreviated notation (48),

B(12) := CW1,1(12) if 1 ≤ κ1, κ2 ≤ Nb

F (12) := CW1,1(12) if Nb + 1 ≤ κ1, κ2 ≤ Nc
CW1,1(12) = 0 if the index types of κ1 and κ2 differ,

then the cluster expansion is

W1,1(12) = B(12) + F (12)
W2,2(1234) = B(13)B(24) +B(14)B(23)

+B(14)F (23) +B(13)F (24) + F (13)B(24) + F (14)B(23)
−F (13)F (24) + F (14)F (23) + CW2,2(1234).

(60)

In (60), vacuum polarization is zero. Nb is the number of boson field components and Nb ≤
Nc, the number of field components. The index type of each index κj , boson or fermion, is
determined in (42) and the free field contribution to (60) is determined in section 3.3 by the
commutation/anti-commutation relations of free field operators. The composition (60) satisfies
both local commutativity A.5 with normal commutation relations [9], and cluster decomposition
A.6. CW2,2 is split signed symmetric (49). Satisfaction of local commutativity A.5 follows from
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the signed symmetry of the connected functions for function sequences from P.

W2,2(1234) = ±W2,2(2134)

= ±W2,2(1243)

where ± is the sign from transposition of the arguments x1, κ1 with x2, κ2, or from the trans-
position of the arguments x3, κ3 with x4, κ4, respectively. The strong cluster decomposition
condition A.6 is satisfied due to the connectivity (46) of the CWk,n−k. For arguments 1 and 3
space-like distant from arguments 2 and 4 (two ∗-dual arguments, two normal arguments, the
support of the functions g∗

1f
∗
1 f1g1 has the support of the f ’s arbitrarily space-like distant from

the support of the g’s),
W2,2(1234)→W1,1(14)W1,1(23).

The remaining cases in axiom A.6 (f∗
2 g2, f

∗
2 f1g1 and f

∗
1 g

∗
1f2) all result in the four-point functions

asymptotically approaching zero.
More generally, VEV function are the component functions of the sequence of functions W

expanded in a ◦-product of free field VEV functions F with n ≥ 4, n-argument VEV functions
U .

W = F ◦ U . (61)

F from (45) results from cluster expansion of the two-point connected function and U results
from cluster expansion of the sequence of connected functions CU described in section 3.4.3.
To satisfy Poincaré invariance A.3, the sequences F and U composed in the construction (61)
transform with the same representation of the Lorentz subgroup.

The ◦-product W of two VEV function sequences (24) T and V,

W := T ◦ V, (62)

is the signed symmetrization (50) of a function sequence w constructed from the elements of T
and V.

Wk,n−k({1, n}) =
∑
π1

σ(π1, (κ)n)

(∑
π2

σ(π2, (κ)n) wk,n−k(π2(π1({1, n})))

)

wk,n−k({1, n}) :=

k∑
ℓ=0

n−k∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vk−ℓ,n−k−j(A′
o)

(k−ℓ)!(n−k−j)!

(63)

with a reference argument argument order Ao, A
′
o

Ao := {1, ℓ} ∪ {k+1, k+j}

A′
o = {1, n} \Ao = {ℓ+1, k} ∪ {k+j+1, n}.

(64)
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The terms in the summation (63) with the arguments in the reference order have positive sign.
In section 3.5.1 it is demonstrated that this choice of sign results in a nonnegative degenerate
scalar product (22). From (27), ∗-dual arguments are anti-ordered in the scalar product but
arguments of the VEV functions W are in natural order. Signs are determined in section 3.4.2
to exhibit normal statistics. ℓ = 0 provides that there are no ∗-dual arguments in T0,j and
ℓ = j provides that there are no function arguments in Tj,j . Similarly for Vk−ℓ,n−k−j if ℓ = k
or ℓ = 2k + j − n. The terms in the expansion T ◦ V are products of elements from T and
V, factors include no arguments in common and all arguments are present in each term of the
expansion (63). As a consequence, the sequence T ◦V consists of generalized functions if T and
V are sequences of generalized functions.

A convenient alternative expression for the elements of W = T ◦ V follows for signed sym-
metric factors T and V. Use of (49) to transpose the arguments into natural order results
in

Wk,n−k({1, n}) =
k∑
ℓ=0

n−k∑
j=0

(∑
s1

∑
s2

σ1σ2 Tℓ,j(A) Vk−ℓ,n−k−j(A′)

)
(65)

with the abbreviated notation σν := σ(πν , (κ)n) for ν = 1, 2, and

A = π1(π2(Ao)) and A′ = π1(π2(A
′
o))

with the reference order Ao and A
′
o from (64). The A′ are the set complements with respect to

{1, n} of A. The summations
∑

s1

∑
s2

include only the subset of the permutations π1, π2,

{sν} ⊂ {πν}

that result in naturally ordered A and A′. With

A = π1(π2(Ao)) = i1, i2, . . . iℓ+j ,

the permutation is included in the summation
∑

s1

∑
s2

only if i1 < i2 < . . . iℓ+j and the n−ℓ−j
argument indices in A′ are similarly ordered. Equality of (65) with (63) follows from the signed
symmetry of T and V. After the indicated argument reorderings, there are ℓ!j!(k−ℓ)!(n−k−j)!
of each distinct term. The normalization in (63) results in a magnitude unity coefficient for
each term Tℓ,j(A) Vk−ℓ,n−k−j(A′) with distinct, naturally ordered sets of arguments.

Demonstrated in section 3.5, axioms A.1-7 are satisfied if the factor sequences in the con-
struction (61) are split signed symmetric (49) and each factor sequence satisfies A.1-7. The
free field contributions F associate the constructions with particles, section 3.6, and the higher-
order connected functions U introduce interaction, sections 3.9 and 4. In the construction (61)
of VEV, W = F ◦ U , only the Fℓ,ℓ contribute for function sequences from P. Consequently,
only terms with j = ℓ contribute to the summation in (63) and then

wk,n−k({1, n}) :=
k∑
ℓ=0

Fℓ,ℓ(Ao)
(ℓ!)2

Uk−ℓ,n−k−ℓ(A′
o)

(k−ℓ)!(n−k−ℓ)!
. (66)
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The ◦-product (63) is commutative, associative and distributive with addition for VEV
function sequences. section 3.5.3. Relabeling the summations in the ◦-product (63) ℓ′ = k − ℓ
and j′ = n− k − j,

wk,n−k({1, n}) =
k∑
ℓ=0

n−k∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vk−ℓ,n−k−j(A′
o)

(k−ℓ)!(n−k−j)!

becomes

wk,n−k({1, n}) =
k∑

ℓ′=0

n−k∑
j′=0

Vℓ′,j′(A′
o)

ℓ′!j′!

Tk−ℓ′,n−k−j′(Ao)

(k−ℓ′)!(n−k−j′)!
.

This second expression is (63) for V ◦ T with the same terms and signs as T ◦ V. Then, T ◦ V
is commutative. That (63) is a summation of arithmetic multiplications provides that the
◦-product is associative and distributive with addition of sequences.

The exponential utilizing the ◦-product (62) of a sequence (24) provides its cluster expansion.
The series

exp ◦(T ) := Ω +
∞∑
j=1

1

j!
T ◦ T ◦ . . . T (67)

is the cluster expansion of T . The series has j factors of T in the jth term.
The cluster expansion (67) of the connected functions CU in (55) is designated U ,

U := exp ◦(CU). (68)

The construction (61) of the VEV functions W applies this U . Sequences are of the form (24).
The free field functions F in (45) constructed from the commutation and vacuum func-

tional properties of the algebra of Hermitian free field operators are also a cluster expansion of
connected functions. The sequence

F = exp ◦(CF) (69)

with
CF1,1 :=W2

and all other CFk,n−k = 0. W2 is the two-point function (47) in the construction. The nonzero
elements of F are

Fk,k =
1

k!
(CF◦)k.

Equality of this cluster expansion and the sequence constructed algebraically from the commu-
tation relations of the creation and annihilation components of the free field is demonstrated
below.
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Equality of this cluster expansion (69) and the sequence F constructed algebraically in
(45) is demonstrated by induction. Inspection of (45) and (69) verifies agreement for k = 1.
Assertion that

Fk,k({1, 2k}) =
∑
S

σ(S, (κ)2k)
k∏
j=1

W2(j, ij)

and application of the cluster expansion to evaluate the next element provides

Fk+1,k+1({1, 2k + 2}) =
1

k + 1
Fk,k({1, k}∪{k + 2, 2k + 1}) ◦W2(k + 1, 2k + 2)

=
1

k + 1

∑
S

σS

k∏
j=1

W2(j, ij) ◦W2(k + 1, 2k + 2)

with notation from (45), (48) and (67), and the function argument labels {ij} adjusted to
ij ∈ {k + 2, 2k + 1} for j ∈ {1, k}.

σS := σ(S, {1, k}∪{k + 2, 2k + 1})

from the algebraic construction (45). Substitution of the ◦-product (65) provides

Fk+1,k+1({1, 2k+2}) =∑
s1

∑
s2

σ1σ2
k+1

∑
S

σS

k∏
j=1

W2(s2(s1(j)), s2(s1(ij)))W2(s2(s1(k+1)), s2(s1(2k+2)))


with the abbreviated notation σν := σ(πν , (κ)2k+2) for ν = 1, 2. The sums over selected
permutations s1, s2 are from (65). From the free field sequence F in the algebraic construction
(45), the summation

∑
S includes the k! distinct pairings j, ij with j ∈ {1, k} and ij ∈ {k+2, 2k+

1}. S = {1, . . . k, i1, . . . ik}. From section 3.4.2, signs accumulate as the product of signs from
adjacent argument transpositions that accumulate to achieve a final argument order. Then,

σ(S′, (κ)2k+2) = σ(π1, (κ)2k+2)σ(π2, (κ)2k+2)σ(S, (κ)2k)

with S′ = {1, . . . k + 1, i1, . . . ik, 2k + 2} with reference argument order σ(S′
o) = 1 for S′

o =
{k+1, . . . 1, k+2, . . . 2k+2}. The terms are each a product of identical two-point functions with
distinct pairings of arguments, and the indicated permutations s1, s2 result in an accumulation
of k + 1 of each distinct term. Then

Fk+1,k+1({1, 2k+2}) =
∑
S′

σS′

k+1∏
j=1

W2(j, ij)
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with summation over distinct pairings of arguments. Finally, induction verifies that the two
expressions for the free field VEV are equivalent.

From (67), the commutivity, associativity and distributivity with addition of sequences of
the ◦-product (62), and the binomial expansion provide

exp ◦(T + V) =
∞∑
N=0

1

N !
((T + V)◦)N

=
∞∑
N=0

1

N !

N∑
ν=0

(
N

ν

)
(T ◦)ν ◦ (V◦)N−ν

=
∞∑

N1=0

∞∑
N2=0

1

N1!N2!
(T ◦)N1 ◦ (V◦)N2

= (exp ◦(T )) ◦ (exp ◦(V))

(70)

from relabeling terms in summations. The expansions for U and F , (68) and (69) respectively,
substituted into the construction (61) provides that

W = exp ◦(CF) ◦ exp ◦(CU)

= exp ◦(CF + CU)
(71)

from the identity (70). The sequences of connected functions add in the construction (61).
Inversion of (67) defines truncated functions TW given a sequence W.

W := exp ◦( TW). (72)

Similarly to RQFT [9], truncated functions are connected in the constructions if vacuum polar-
ization is zero. If both 1W and 2W are signed symmetric and satisfy A.1-7, then 1W◦2W realizes
relativistic quantum physics and this leads to consideration of prime and divisible realizations
[25]. From (70), truncated functions add.

The cluster expansions (68) and (69) and specification of the connected functions (47) com-
plete the constructions of physically nontrivial realizations of RQP. There is a realization of
relativistic quantum physics for: every realization of free fields (selection of Nc,M(p), D, S(A));
nonnegative measure dσ (that determines the cn, the relative contributions of the connected
functions); and Lorentz invariant measures dµB(p) and dµΥ(p), and constant αo (that char-
acterize interactions). In constructions with multiple species, distinct αo, dµB(p), dµΥ(p) and
coupling constants cn can be introduced for each constituent elementary particle. Satisfaction
of prospective axioms A.1-7 is verified in section 3.5.
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3.4.5 Vacuum polarizations

Mean VEV of the field ⟨Ω|Φ(x)κΩ⟩ are set to zero in the development above without loss of
generality. Nonzero means are independently specified for the boson field components without
impact to satisfaction of A.1-6. The addition of a constant to the quantum field defined by
(26) implements fields Φ(x)κ with finite means except, if κ is a fermion index, then addition of
a constant to the field violates anticommutation.

The VEV

(D·)k Vk,n−k({1, n}) :=
k∏
ℓ=1

aκℓ

n∏
j=k+1

aκj

satisfy A.1-6 and an appropriately restated A.7. The constants

aκ := ⟨Ω|Φ(x)κΩ⟩

and aκ is finite only for boson indices κ. For fermion indices κ, aκ = 0. Applications of Dirac
conjugations D use the matrix notation (12) and the abbreviated notation (48) is used for the
VEV functions.
V is trivially split signed symmetric (49) and as a consequence of the properties of the

◦-product (62), and from (72),

W = F ◦ U ◦ V = exp ◦(CF + CU + TV)

satisfies A.1-6 and an appropriately restated A.7.

3.5 Satisfaction of the axioms

3.5.1 Nonnegative ◦-products

The ◦-product of two signed symmetric VEV function sequences (24) that each provide a
degenerate scalar product (22) provides a degenerate scalar product. This result is demonstrated
in this section.

From (63), W = T ◦ V is the signed symmetrization (50) of a sequence w. From (51), if w
provides a degenerate scalar product, then W provides a degenerate scalar product. With the
degenerate scalar product (22) and w from (63), it is demonstrated that w(f∗, g) provides a
degenerate scalar product for elements in the tensor product of two linear vector spaces. These
linear vector spaces each have degenerate scalar products derived from the sequences T and
V, respectively. Scaled sequences and preservation of nonnegativity (52) for scaled sequences
provide the degenerate scalar products Ta(f∗, g) and Va(f∗, g). Then, demonstration of the
predicates provide that if T and V provide scalar products, then W provides a scalar product.
Linear vector spaces with degenerate scalar products are also designated pre-Hilbert spaces.
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If both T and V provide degenerate scalar products, then the tensor product of the pre-
Hilbert spaces that result from scaled V and T has elements labeled f ⊗ g and a degenerate
scalar product

w((f
1
⊗ f

2
)∗, g

1
⊗ g

2
) = Ta(f∗

1
, g

1
)Va(f∗

2
, g

2
). (73)

The scales (52) on the degenerate scalar products are aℓ := 1/ℓ! in both instances. In the pre-
Hilbert spaces of function sequences based on P for generalized functions Ta and Va, fields ΦT
and ΦV are defined (26). These operations extend to the tensor product space. The elevations
ΦT ⊗ I and I⊗ ΦV to the tensor product space are

(ΦT ⊗ I)f ⊗ g = (ΦT f)⊗ g

and
(I⊗ ΦV)f ⊗ g = f ⊗ (ΦVg).

The composite vacuum is Ω = ΩT ⊗ ΩV . To compact notation, the arguments of the fields are
understood. The construction is a variation of a construction due to Borchers and Uhlmann
[25, 46]. |O(fn)Ω⟩ with

O(fn) :=
∑
(κ)n

∫
d(x)n

(
n∑
ℓ=0

(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ

ℓ!(n− ℓ)!

)
fn((x)n)(κ)n

are elements of the tensor product space with

(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ :=

 ℓ∏
j=1

(ΦT (xj)κj ⊗ I)

 n∏
j=ℓ+1

(I⊗ ΦV(xj)κj )

 .

In the tensor product space,
∑

n,m⟨O(fn)Ω|O(gm)Ω⟩ is the degenerate scalar product for func-
tion sequences from P.∑

n,m

⟨O(fn)Ω|O(gm)Ω⟩ =
∑
n,m

∑
(κ)n+m

∫
d(x)n+m

n∑
ℓ=0

m∑
j=0

×⟨(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ

ℓ!(n− ℓ)!
Ω|(ΦT ⊗ I)j(I⊗ ΦV)

m−j

j!(m− j)!
Ω⟩

×fn((x)n)(κ)n
gm((x)n+1,n+m)(κ)n+1,n+m

.

The definition of scalar product, the operators ΦT (xj)κj ⊗ I and I⊗ ΦV(xj)κj , the ∗-dual (11)
and the relation between VEV and generalized functions (27) result in∑

n,m

⟨O(fn)Ω|O(gm)Ω⟩ =
∑
n,m

∑
(κ)n+m

∫
d(x)n+m

n∑
ℓ=0

m∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vn−ℓ,m−j(A
′
o)

(n−ℓ)!(m−j)!

×fn((x)n)∗
(κ)n

gm((x)n+1,n+m)(κ)n+1,n+m
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for Ao, A
′
o from (64). Then substitution of the expression (63) for functions wk,n−k identifies

that
w(f∗, g) =

∑
n,m

⟨O(fn)Ω|O(gm)Ω⟩. (74)

As a consequence. w(f∗, f) ≥ 0 since it is the squared norm of a vector in the tensor product
space.

Satisfaction of nonnegativeness A.2 for W = T ◦ V follows from (51), (52) and (63) if both
T and V are signed symmetric and satisfy A.1-2 for function sequences P. For W = F ◦ U ,

W(f∗, f) ≥ 0

if U satisfies nonnegativeness since it is established that F is positive [9, 55]. U is constructed as
signed symmetric and from (45), F is signed symmetric. Satisfaction of nonnegativity A.2 for
W = F ◦U reduces to demonstration that the U in the cluster expansion (68) of the connected
functions (55) satisfies nonnegativity.

3.5.2 Positivity of U

In this section it is demonstrated that the constructed split signed symmetric sequences (24)
of generalized functions U from the cluster expansion (68) of the connected functions (55)
provide degenerate scalar products (22) for state describing function sequences from P. With
the result of section 3.5.1 that the ◦-products of split signed symmetric sequences that each
provide a degenerate scalar product (22) provides a degenerate scalar product, this provides
that W = F ◦ U satisfies nonnegativity A.2.

The construction (68) of U as exp ◦(CU) and that a positively weighted summation of gener-
alized functions that provide degenerate scalar products provides a degenerate scalar product,

(αT + β V)(f∗, f) = αT (f∗, f) + β V(f∗, f) ≥ 0

if α, β > 0 provides that the degenerate scalar product based on U satisfies nonnegativity
if the degenerate scalar product based on CU is nonnegative. If CU provides a degenerate
scalar product, then ◦-products of CU provide degenerate scalar products from the result of
section 3.5.1. A demonstration of the nonnegativity of CU(f∗, f) suffices to demonstrate the
nonnegativity of U(f∗, f). From section 3.4.4, the number of terms in the expansion (67) of
Uk,n−k is finite, and the sequences f ∈ P are terminating.

From substitution of the construction (56) of Qk,n−k((p)n)(κ)n
into the construction (55) of

the connected VEV functions, the connected VEV functions are

CUn,m({1, n+m}) :=
∑
π1

σ(π1, (κ)n+m)

(∑
π2

σ(π2, (κ)n+m) ũn,m(π2(π1({1, n+m})))

)
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with

ũn,m((p)n+m)(κ)n+m
:=

∫∫
dσ(λ)

du

(2π)4
λn+m

n+m∏
j=1

e−ipju δ(p2j − λ
−2
cj )

d

dρj

× exp(
∑

a,b∈Jn,n+m

ρaρbhκaκb
(pa, pb)).

(75)

Then from (51), CU(f∗, f) ≥ 0 if u(f∗, f) ≥ 0 with

u(f∗, f) =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)nũn,m((p)n+m)(κ)n+m

×f̃n(−pn, . . .− p1)κn...κ1 f̃m(pn+1, . . . pn+m)(κ)n+1,n+m

(76)

from the scalar product (22). This scalar product is expressed using Fourier transforms (17)
from Parseval’s equality (18), and the definition (11) for ∗-dual functions. The Fourier transform
(17) of a ∗-dual function is∫

d(x)n
(2π)2n

e−ip1x1 . . . e−ipnxnf∗((x)n)(κ)n
= (DT ·)nf̃n((−p)n,1)(κ)n,1

.

The factorization (59) of ũm,n+m((p)n+m)(κ)n+m
in section 3.4.3,

(D·)n exp(
∑

a,b∈Jn,n+m

ρaρbhκk+ℓκb
) = exp(

n∑
b1>a1=1

ρa1ρb1(DB(pa1+αopb1)D
T )κa1κb1

)

× exp(

n+m∑
b2>a2=n+1

ρa2ρb2B(αopa2+pb2)κa2κb2
) exp(

∞∑
ℓ=1

ρn+1−ℓρn+ℓ(DΥ)κn+1−ℓκn+ℓ
),

(77)

results in display of u(f∗, f) ≥ 0 [36]. Substitution of the identity (41) into the definition (58)
of B(p) provides that

DB(p)DT = B(−p)† (78)

with
B†(−p) = B(−p)T .

Then, substitution of (78) results in

exp(

n∑
b1>a1=1

ρa1ρb1(DBDT )κa1κb1
) = exp(

n∑
b1>a1=1

ρa1ρb1B(−pa1−αopb1)κb1
κa1

).

If the arguments, a1, b1 ∈ {1, n} are reordered from the order of a ∗-dual function (11),
pn, κn, pn−1, κn−1, . . . p1, κ1, to

p1, κ1, p2, κ2, . . . pn, κn,
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then the first factor in the factorization (77) becomes

exp(
n∑

b1>a1=1

ρa1ρb1(DB(pa1 + αopb1))D
T )κa1κb1

) = exp(

n∑
b1>a1=1

ρa1ρb1B(−αopa1 − pb1))κa1κb1
.

This is the complex conjugate in the form of the second term in (77). Except for the summation
from 1 to n rather than summation from n+1 to n+m and reflection of the energy-momentua
pj 7→ −pj appropriate for the ∗-dual function, the first and second factors of (77) are complex
conjugates.

The nonnegative matrix DM(s) = C†(s)C(s) from (40) and then substitution into (58)
provides that

DΥ(p) =

∫
dµΥ(s) e

−spC†(s)C(s). (79)

The factor

exp(
∞∑
ℓ=1

ρn+1−ℓρn+ℓ(DΥ)κn+1−ℓκn+ℓ
)

=
∞∑
N=0

1

N !

( ∞∑
ℓ=1

ρn+1−ℓρn+ℓ(DΥ(−pn+1−ℓ + pn+ℓ))κn+1−ℓκn+ℓ

)N
.

Then, the identity for summation,

∑
a

∑
b

xayb =

(∑
a

xa

)(∑
b

yb

)
, (80)

and using linearity to reorder finite summations with the integration in (79) results in

∞∑
ℓ=1

ρn+1−ℓρn+ℓ(DΥ(−pn+1−ℓ+pn+ℓ)))κn+1−ℓκn+ℓ

=

∞∑
ℓ=1

Nc∑
ℓ=1

∫
dµΥ(s)

(
ρn+1−ℓe

spn+1−ℓC(s)ℓκn+1−ℓ

) (
ρn+ℓe

−spn+1−ℓC(s)ℓκn+ℓ

)
using the expression for Hermitian transpose C(s)†. Similarly,( ∞∑

ℓ=1

ρn+1−ℓρn+ℓ(DΥ(−pn+1−ℓ + pn+ℓ))κn+1−ℓκn+ℓ

)N
=

∞∑
ℓ1=1

Nc∑
ȷ1=1

∫
dµΥ(s1) . . .

×
∞∑

ℓN=1

Nc∑
ȷN=1

∫
dµΥ(sN )

N∏
ν=1

(
ρn+1−ℓνe

sνpn+1−ℓνC(sν)ȷνκn+1−ℓν

) (
ρn+ℓνe

−sνpn+ℓνC(sν)ȷνκn+ℓν

)
.
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Substitution of the factors from (59) display u(f∗, f) as a summation with positive weights
of manifestly nonnegative terms. Collection of factors from (75) and the factorization of the
exponential form (59) results in a convenient definition.

FN (λ, u, (s, ℓ, ȷ)N ) :=
∑
n

∑
(κ)n

λn
∫
d(p)n f̃n((p)n)(κ)1,n

n∏
j=1

(
e−ipju δ(p2j − λ

−2
cj )

d

dρj

)

× exp(
n∑

b2>a2=1

ρa2ρb2B(αopa2+pb2)κa2κb2
)
N∏
ν=1

(
ρℓνe

−sνpℓνC(sν)ȷνκℓν

)
.

FN is evaluated with all ρj = 0 after the indicated differentiations. Then, reordering the
either finite or uniformly convergent summations and improper integrations, and collecting
summations and sets of factors in the abbreviated notation FN (λ, u, (s, ℓ, ȷ)N ), it follows that
the expression (76) for u(f∗, f) becomes

u(f∗, f) =
∞∑
N=0

1

N !

∫∫
dσ(λ)

du

(2π)4

Nc∑
ȷ1=1

∞∑
ℓ1=1

∫
dµΥ(s1) . . .

×
Nc∑
ȷN=1

∞∑
ℓN=1

∫
dµΥ(sN ) |FN (λ, u, (s, ℓ, ȷ)N )|2 .

The identity (80), and with the order of the arguments of the ∗-dual of f̃n returned to the order

p1, κ1, p2, κ2, . . . pn, κn

from pn, κn, pn−1, κn−1, . . . p1, κ1 and with momenta reflected pj 7→ −pj for the ∗-dual, j ∈ {1, n},
by relabeling or substitutions for summation variables, inspection provides the result. The
second factor of FN includes variables labeled by indices n + 1 to n +m that are relabeled as
independent variables with indices 1 to m.

The factoring of the connected functions (59) expresses u(f∗, f) as a positively weighted
summation of the nonnegative magnitude squared. The measures du, dσ(λ) and dµΥ(s) are
nonnegative. u(f∗, f) is nonnegative and as a consequence, from (51), CU(f∗, f) is nonnegative.
(29) in section 3.2 provides that nonnegativity is preserved with implementation of elemental
stability A.7. Finally, U(f∗, f) is nonnegative and split signed symmetric as a consequence of
the expansion (67), and the nonnegativity and split signed symmetry preserving properties of
the ◦-product.

3.5.3 Poincaré invariance

The Poincaré covariance of the constructed VEV is established in [36]. Invariance of the de-
generate scalar product (22) follows from the conservation of energy-momentum and properties
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(44) of the representations of the Lorentz subgroup. Compliant example representations of the
Lorentz subgroup are included in section 3.3.2.

Poincaré invariance of likelihoods is that

⟨(a,Λ)g|(a,Λ)f⟩ = ⟨g|f⟩,

for Poincaré transformations (31),

(a,Λ)f̃n((p)n)(κ)n
:=

n∏
k=1

e−ipa (S(A)T ·)nf̃n((Λ−1p)n)(κ)n
.

The scalar product (22), the Fourier transform (17), the Parseval’s equality definition for the
Fourier transform of a generalized function (18), and the dual of functions (11) result in

⟨(a,Λ)g|(a,Λ)f⟩ =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)nW̃n,m((p)n+m)(κ)n+m

n+m∏
ℓ=1

e−ipℓa

×(S(A)T ·)ng̃n((−Λ−1p)n,1)κn,1
(S(A)T ·)n+1,n+mf̃m((Λ

−1p)n+1,n+m)(κ)n+1,n+m

in the matrix notation (12). Translation invariance is verified by noting that the support of

W̃k,n−k includes only the surface with energy-momentum conserved; p1+p2+. . . pn = 0 from the
connected VEV functions (47) and the cluster expansion (71). Energy-momentum conservation,
p1 + p2 + . . . pn = 0, implements translation invariance.

Reordering summations, substitution of S(A)D = DS(A) from (44), the indicated substi-
tutions Λ−1pj 7→ pj for summation variables, and that the determinant of the Lorentz trans-
formation Λ is unity results in

⟨(a,Λ)g|(a,Λ)f⟩ =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)n(S(A)·)n+mW̃n,m((Λp)n+m)(κ)n+m

×g̃n((−p)n,1)κn,1 f̃m((p)n+1,n+m)(κ)n+1,n+m

= ⟨g|f⟩

if
(S(A)·)nW̃k,n−k((p)n) = W̃k,n−k((Λ

−1p)n).

There is exactly one factor of S(A) for each field component argument κj and consequently two
factors of S(A) for every factor of M(pℓ)κjκℓ

or h(pj , pℓ)κjκℓ
in each term in Wk,n−k from the

composition (71) of connected functions and the connected functions from (45) and (68) with
(55) and (56).
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By construction, the Nc × Nc matrices M(p) in (38) and the h(p1, p2) from (57) and
(58) transform with the same representation of the Lorentz subgroup. ((S(A)·)2M(p)) =
S(A)M(p)S(A)T from (12), and from condition (44),

S(A)M(p)S(A)T =M(Λ−1p).

Then if h(p1, p2) = B(αop1 + p2),

S(A)h(p1, p2)S(A)
T =

∫
dµB(s) e

is(αop1+p2)S(A)M(s)S(A)T

=

∫
dµB(s) e

is(αop1+p2)M(Λ−1s)

=

∫
dµB(s

′) eis
′Λ−1(αop1+p2)M(s′)

= h(Λ−1p1,Λ
−1p2)

and similarly for h(p1, p2) = B(p1 + αop2). If h(p1, p2) = Υ(−p1 + p2),

S(A)h(p1, p2)S(A)
T =

∫
dµΥ(s) e

s(p1−p2)S(A)M(s)S(A)T

=

∫
dµΥ(s) e

s(p1−p2)M(Λ−1s)

=

∫
dµΥ(s

′) es
′Λ−1(p1−p2)M(s′)

= h(Λ−1p1,Λ
−1p2).

These results follow from Lorentz invariance of the measures dµB(s) and dµΥ(s), the substitu-
tion s′ = Λ−1s for the summation variable, the Lorentz invariance of the Minkowski signature
ΛT gΛ = g, and that ps := pT gs is a Lorentz scalar. The generalized functions δ(pi1 + . . . pin)
and δ(p2k−λ

−2
ck ) are Lorentz scalars. These three cases, each κj uniquely associates with a factor

of M , B or Υ, apply in every term in the cluster expansion (71) with (45), (68), (55) and (56).
Each factor of M or h introduces paired indices κa, κb with a ̸= b, and as a consequence, with
the exception of Lorentz scalar fields, only even order VEV appear in the constructions.

The constructed VEV provide a Poincaré invariant scalar product (22) that satisfies rela-
tivistic invariance A.3.

3.5.4 Cluster decomposition

Satisfaction of the strong form of cluster decomposition A.6 follows from the connectivity of
the truncated functions (72) and the cluster expansion (71). This is an established result in
RQFT [9] but the constructed U do not generally satisfy the Wightman axioms. Satisfaction
of cluster decomposition A.6 for the constructions is demonstrated in this section.

W(ψ∗ × g∗, φ× f) −→W(ψ∗, φ)W(g∗, f)
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as the supports of ψ,φ become arbitrarily distantly space-like separated from the supports of
g, f is the statement (28) of axiom A.6.

Linearity of summations and relabeling summation variables in the scalar product (22) with
W(ψ∗, φ) labeled by n,m and (x, κ)n+m, and W(g∗, f) labeled by ℓ, k and (y, µ)ℓ+k results in

W(ψ∗, φ)W(g∗, f) =
∑
n.m

∑
ℓ,k

∑
(κ)n+m

∑
(µ)ℓ+k

∫∫
d(x)n+md(y)ℓ+k

×(D·)n Wn,m((x)n+m)(κ)n+m
(D·)ℓ Wℓ,k((y)ℓ+k)(µ)ℓ+k

×ψn((x)n,1)(κ)n,1
φm((x)n+1,n+m)(κ)n+1,n+m

gℓ((y)ℓ,1)(µ)ℓ,1
fk((y)ℓ+1,ℓ+k)(µ)ℓ+1,ℓ+k

.

(81)

The ×-product of function sequences (4), the ∗-dual of function sequences (11), and rela-
beling summation variables with the same designations for ψ,φ and g, f as (81) produces

W(ψ∗ × g∗, φ× f) =
∑
n.m

∑
ℓ,k

∑
(κ)n+m

∑
(µ)ℓ+k

∫∫
d(x)n+md(y)ℓ+k

×(D·)n+ℓ Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

×ψn((x)n,1)(κ)n,1
φm((x)n+1,n+m)(κ)n+1,n+m

gℓ((y)ℓ,1)(µ)ℓ,1
fk((y)ℓ+1,ℓ+k)(µ)ℓ+1,ℓ+k

.

(82)

The assignment of summation variables is a partition of arguments into two subsets P with
spacetime arguments (x)n+m and P ′ with spacetime arguments (y)ℓ+k suitable to test satisfaction
of cluster decomposition (28). To test the cluster decomposition (28), the supports of the ψn, φm
are taken to be arbitrarily space-like separated from the support of the gℓ, fk: every xj ∈ P can
be considered to be arbitrarily space-like separated from every yj′ ∈ P ′.

In this notation, the construction (71) of W has elements

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k) = (exp ◦(CW))n+ℓ,m+k

with the indicated association of arguments

(x, κ)n, (y, µ)ℓ, (x, κ)n+1,n+m, (y, µ)ℓ+1,ℓ+k ↔ (x, κ)1,n+m+ℓ+k

on the right- and left-hand sides, respectively. The number of the ∗-dual function arguments is
designated n+ ℓ and m+ k designates the number of the function arguments in (x, κ)n+m+ℓ+k.

If

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

=Wn,m((x)n+m)(κ)n+m
Wℓ,k((y)ℓ+k)(µ)ℓ+k

,

when the supports of every xj ∈ P is arbitrarily space-like separated from the support of every
yj′ ∈ P ′, then inspection of (81) and (82) provides that cluster decomposition is demonstrated.
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The elements of the sequence CW from (47) are connected, and due to the great space-like
separations of the (x)n+m from the (y)ℓ+k, any factor of CWν1,ν2 in any term of the cluster
expansion (67) for (exp ◦(CW))) is zero unless the arguments are all from (x, κ)n+m or are all
from (y, µ)ℓ+k. Then, a designation

δP ((x)n+m, (y)ℓ+k) =

{
1 if all arguments are ∈ P
0 otherwise

(83)

and similarly for P ′ is convenient. Arguments P are arguments of ψn, φm and arguments P ′

are arguments of gℓ, fk in the evaluation (82) of W(ψ∗× g∗, φ× f). Then, in the context of the
scalar product (82),

W = exp ◦(CW)

= exp ◦(δPCW + δP ′CW)

= (exp ◦(δPCW)) ◦ (exp ◦(δP ′CW))

= (δPW) ◦ (δP ′W)

(84)

from the construction (71) and the identity (70). δPV designates the sequence (24)

(V0.0, δP (x1)V1,0(x1)κ1 , . . . , δP ((x)n+m)Vn,m((x)n+m)(κ)n+m
, . . .).

The factors of the elements of the sequence δPW have common spacetime arguments, and
the designation of arguments as P or P ′ is established in the evaluation of (82). From (83),
partitions that transpose P arguments with P ′ arguments do not contribute in the ◦-product
(63) in the last line of (84). From W0,0 = 1 and the identity (65) for the ◦-product (63),
identification of the elements of the sequence W in (84) produces

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

=Wn,m((x)n+m)(κ)n+m
Wℓ,k((y)ℓ+k)(µ)ℓ+k

in the context of the scalar product (82). Substitution into (82) and comparison with (81)
completes the demonstration that for the construction (71) of W,

W(ψ∗ × g∗, φ× f) −→W(ψ∗, φ)W(g∗, f)

as the dominant supports of ψ,φ become arbitrarily distantly space-like separated from the
supports of g, f .

The cluster expansion (71) for W and the connectedness (47) of CW satisfy cluster decom-
position A.6.
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3.5.5 Regularity

If the constructed VEV functionsWk,n−k((x)n)(κ)n
are generalized functions from S ′(R4n) then

regularity A.1 is satisfied. The construction, (61) with (66), (38), (45), (55) and (68), displays
the VEV as finite sums of products of connected functions (47) with factors that have no argu-
ments in common. Then, demonstration of regularity reduces to demonstration that the n ≥ 4,
n-argument connected functions are elements of S ′(R4n) since the two-point function (38) is an
element of S ′(R8). The n ≥ 4, n-argument connected functions from (47), CWk,n−k((x)n)(κ)n

,
are products of elementary generalized functions but since products are not generally defined,
these particular products must be justified.

To satisfy regularity A.1 for the physically nontrivial realizations, elemental stability A.7
is adopted. Elemental stability is implemented in (29) and the Qk,2n−k((p)2n)(κ)2n

in (56)
describes interaction without introduction of a singular contributions from the extrapolation of
CUk,2n−k to 2n = 2 [32, 36]. For functions in P and without vacuum polarization, conservation
of energy sets all contributions from W0,n to zero if n ≥ 2. If kinematic constraints, for
example, conservation of energy and angular momentum, preclude decay of isolated elementary
particles, then satisfaction of formal Hermiticity W.a is consistent with W1,n−1(f

∗
1 fn−1) = 0.

More generally, settingW1,n−1(f
∗
1 fn−1) = 0 is inconsistent with formal Hermiticity but ensures

regularity A.1 in the constructions.
Whether the connected functions CWk,n−k((x)n)(κ)n

are continuous linear functionals from
S ′(R4n) rests on whether the summations over the indicated submanifolds of (p)n ∈ R4n in (47)
are regular. The submanifolds are determined by the Dirac delta functions in the connected
functions (47). Each energy-momenta pj lies on a mass shell and energy-momentum is con-
served. If the singularities of the Nc×Nc array of functions over the energy-momenta h(p1, p2)
lie beyond the support of the Dirac delta functions, then their singularities are not a consider-
ation. Multiple component fields introduce multiple elementary masses mκ and h(p1, p2) with
singularities. There are no nontrivial finite Lorentz invariant measures [9] and as a consequence,
B(p) and Υ(p) from (57) with (58) are either constant or diverge at p = 0. From (58), non-
constant B(p) are at least as singular as the Pauli-Jordan function [53]. From the singularities
of the Pauli-Jordan function [9], and noting the Fourier transform property (19) and that the
M(p) in (57) are multinomials of the energy-momentum components, the B(p) are as singular
as

B(p) ≈ C dk

dpk

(
a δ(p2) +

b

p2

)
(85)

in a neighborhood of p2 = 0 and k > 0 for nonzero spins. C is a constant. A h(p1, p2) that
does not vary over the energy-momenta results from measures cδ(s)ds for B,Υ. The energy-
constrained support of functions from P suffices to exclude the singularities of h(p1, p2) from
consideration in satisfaction of regularity A.1. The singularity of B(αopj + pk) is encountered
only when pj is the argument of a ∗-dual of a function (Ej = −ℏcωj) and pk is the argument
of a function (Ek = ℏcωk). In these instances, the points (αopj + pk)

2 = 0 would be within the
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support of the summations that define the scalar product (22). However, the selected form (56)
with (57) includes only energy-momentum support pj , pk with either both Ej , Ek > 0 or both
Ej , Ek < 0. Then (αopj + pk)

2 > α2
om

2
κj
c2+m2

κk
c2. Similarly for Υ(−pj + pk), the singularities

are encountered only if both arguments are associated with a function or both are associated
with the ∗-dual of a function. The form (57) is selected to exclude the singularities of h(p1, p2)
from the support of the summations that evaluate scalar products (22) [36].

In this section, the number of spacetime dimensions is considered and is designated d.
Each connected function (47) in the constructions is supported solely on submanifolds with

energy and momentum conserved. After evaluation of the mass shell delta functions and with
consideration of the zeros in the energy support of functions in P and P∗, the Fourier transforms
of the n ≥ 4, n-argument connected functions include only momenta on the manifold defined
by

n∏
j=1

1

2ωj
δ(ω1 . . .+ ωk − ωk+1 . . .− ωn) δ(p1+p2 . . .+pn) (86)

with

ωj =
√
λ−2
cj + p2

j

from (8). Factors of 1/(2ωj) are multipliers of tempered functions for finite masses and are not
considered further. Within the submanifold of R3n with momentum conserved,

pn = −p1 . . .− pn−1. (87)

Energy conservation is δ(Ek((p)n)) with

Ek((p)n) :=
k∑
j=1

ωj −
n∑

j=k+1

ωj

:=

n∑
j=1

sjωj .

(88)

sj := −1 if j ∈ {k + 1, n} and equals 1 otherwise. δ(Ek((p)n)) defines a generalized function
except possibly for points on the surface Ek((p)n) = 0 with a vanishing gradient, ∇Ek((p)n) = 0
[19].

The components of the gradient ∇Ek((p)n) within the submanifold with momentum con-
served are

dEk((p)n)

dpj
= sj

dωj
dpj
− dωn
dpn

dpn
dpj

= sj
pj
ωj

+
pn
ωn

(89)
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from (88) with d − 1 dimensional momentum vectors pj , the constrained pn from (87), and
j ∈ {1, n − 1}. Summing squares provides that when the gradient vanishes, p2

j/ω
2
j = p2

n/ω
2
n.

Then, substitution of ωj provides that the gradient vanishes if and only if

sj
pj
mκj

= − pn
mκn

for each j ∈ {1, n− 1} and with the constrained pn from (87). Then both the function and its
gradient vanish,

Ek((p)n) = ∇Ek((p)n) = 0,

only if

Ek((p)n)√
1 + p2

n
m2

κn

=

n∑
j=1

sjmκj = 0 (90)

from the assignments
pj
mκj

= −sj
pn
mκn

that set the gradient to zero. A neighborhood of those points with a zero energy and vanishing
gradient is

pj
mκj

= sj
p1

mκ1

+ ej

with ∥ej∥ < ϵ≪ 1, 0 < ∥p1∥ and j ∈ {2, n− 1}. In this neighborhood,

pn = −
n−1∑
j=1

pj = −
mκn

mκ1

p1 −
n−1∑
j=2

ej

using (90) and

ωj ≈
mκj

mκ1

ω1 + sjmκj

p1 · ej
ω1

+mκ1mκj

e2j
2ω1
−mκ1mκj

(p1 · ej)2

2ω3
1

to second order in small quantities and with en := −
∑n−1

j=2 ej and for j ∈ {2, n}.
On the submanifold with momentum and energy conserved, and within a neighborhood of

the points where the gradient ∇Ek((p)n) equals zero,

Ek((p)n) ≈
mκ1

2ω3
1

n∑
j=2

sjmκj

(
ω2
1 e2j − (p1 · ej)2

)
:=

R2

2ω3
1

(αp2
1 + βm2

κ1)
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from (90), polar coordinates for the (n− 2) spatial vectors ej , and with the definitions

R2 :=
n−1∑
j=2

e2j ,

u1 := p1/∥p1∥ and

αR2 := mκ1

n∑
j=2

sjmκj

(
e2j − (u1 · ej)2

)
, βR2 := mκ1

n∑
j=2

sjmκj e
2
j .

The result is that energy conservation (86) defines a generalized function except possibly for
the points with the gradient ∇Ek((p)n) vanishing when Ek((p)n) = 0, the points with R = 0.
That is,

δ(Ek((p)n)) = δ( R
2

2ω3
1

(αp2
1 + βm2

κ1))

=
2ω3

1

R2 δ(αp2
1 + βm2

κ1) +
2ω3

1

αp2
1 + βm2

κ1

δ(R2).

Since (86) is a generalized function except when both the energy (88) and gradient (89) vanish,
R > 0, δ(αp2

1 + βm2
κ1) is regular.

For n ≥ 4 and a sufficient number of dimensions d, the singularities of the energy-momentum
conserving delta functions (86) are locally summable for the regular selection (57) of h(p1, p2).
The determinant of the Jacobian matrix to polar coordinates for (e)2,n−1 contributesR

(d−1)(n−2)−1

in d spacetime dimensions for the nth order connected functions. Then, the summations in eval-
uation of the degenerate scalar product (22) include

R(d−1)(n−2)−1

R2
dR = R(d−1)(n−2)−3 dR

in the neighborhood of the singularities and d ≥ 3 suffices for the summations to converge and
the constructed W to be continuous linear functionals dual to tempered functions. Terms

R(d−1)(n−2)−1δ(R2)

do not contribute for n ≥ 4, d ≥ 3 [19]. d ≥ 3 suffices for finite masses mκj and d ≥ 4 includes
massless particles [35].

To include massless particles, mκ = 0, the development follows the finite mass case except
that new singularities are encountered. The positive and negative mass shells intersect at
p2 = 0, and ω−1 and the derivatives of ω =

√
p2 diverge at p2 = 0. Selection of basis

function spaces P with Fourier transforms with infinite order zeroes at each p2
j = 0 regularizes
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the development [35]. With massless particles, a neighborhood of the points with a vanishing
gradient (89) is defined by

pj√
p2
j

= sj
p1√
p2
1

+ ej

with the constraint that
e2j + 2sj

p1 · ej√
p2
1

= 0.

Unlike the finite mass case, the perturbations ej must preserve the unit lengths of pj/
√

p2
j .

The constraint to unit length reduces the number of degrees of freedom in the summation over
(e)2,n−1. In polar coordinates, the summation contributes R(d−2)(n−2)−1 and as a consequence,
d = 4 is required to satisfy regularity with the inclusion of massless particles.

Finite masses, elemental stability A.7, the regular selection (57) for the arrays h(p1, p2) and
three or more spacetime dimensions d suffice for the constructed W to satisfy regularity A.1.
Inclusion of massless elementary particles requires four or more dimensions [35].

3.5.6 Summary of constructions

The construction of VEV functions W from connected functions (47), (61) with (38), (45),
(55) and (68), suffices to satisfy conditions A.1-7. The constructions are explicit example
nontrivial realizations of relativistic quantum physics. While sufficient to satisfy A.1-7, the
selected forms are not necessary to satisfaction of A.1-7. The constructed VEV satisfy A.1-
7 for states described by function sequences from HP , the completion in the Hilbert space
norm (21) of the basis function spaces P (7). Or equivalently, the construction is for function
sequences from S with modified VEV, section 3.7.2. For the constructed VEV:

A.1: Demonstrations of regularity apply if the factors Qk,2n−k((p)2n)(κ)2n
in the connected

functions (47) are polynomially bounded growth, locally Lebesgue-summable functions of
the energy-momenta over the appropriate domains (37), masses are finite, and the number
of spacetime dimensions equals or exceeds three (2+1). Massless particles require four
(3+1) or more spacetime dimensions and additional constraints on P, [35] and section
3.5.5. Regularity requires that the singularities of nonconstant h(p1, p2) in the VEV (68)
with (55) and (56) are excluded from the support of the scalar product (22), and that the
divergent extrapolation of the connected functions (55) to two-point function is eliminated
(29). A demonstration of regularity is in section 3.5.5.

A.2: The nonnegativity of the scalar product (22) determined by the composition (61), W =
F ◦ U , follows from the nonnegativity of the split signed symmetric (49) constituent
sequences of generalized functions F and U , section 3.5.1. The nonnegativity of F is
well-established [9, 55]. The nonnegativity of U is demonstrated in section 3.5.2 and
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follows from the nonnegativity of CU , the cluster expansion (68), and that the ◦-product
preserves the nonnegativity and split signed symmetry of sequences.

A.3: Section 3.5.3 includes a demonstration of relativistic invariance (30). Relativistic invari-
ance follows from the relativistic covariance of F and the expansions (55), (56) and (68)
for U . The S(A), M(p) and D from an underlying free field F establishes the realization
of the Lorentz subgroup for a construction. Translation invariance follows from energy-
momentum conservation.

A.4: The limitation of the support of VEV to mass shells together with the zeros (14) on
negative energy mass shells in the support of the functions from the basis spaces P
implements the spectral support condition. In the evaluation of scalar products (22),
either

pj + pj+1 . . .+ pn ∈ V
+

explicitly since each pℓ ∈ V
+
, or energy-momentum conservation provides that this sum of

energy-momenta is the negative of p1+p2 . . .+pj−1 with each of p1, . . . pj−1 explicitly in the
closed backward cone. The cones are closed under addition of elements. Demonstrations
of spectral support are included in [32, 36].

A.5: For constructions based on function sequences P from section 3.7, local commutativity
follows from the split signed symmetry of the constructed VEV (61).

A.6: Cluster decomposition follows from the connectedness of the functions CW in (47) and
the cluster expansion (71) for the VEV functions W. The demonstration of cluster de-
composition is in section 3.5.4.

A.7: VEV function sequences that satisfy A.1-6 determine sequences W that also satisfy el-
emental stability A.7, (29). Elemental stability follows for mean zero fields if Wk,0 =
W0,k = Wk,1 = W1,k = 0 for k ≥ 2. For mean zero fields, W1,0 = W0,1 = 0. If kinematic
constraints do not suffice to satisfy elemental stability, then the constructions must violate
formal Hermiticity W.a. The introduction of vacuum polarizations preserves satisfaction
of A.1-7 with the appropriately restated A.7, section 3.4.5.

The revised quantum-classical correspondence introduced in section 1 does not require Her-
mitian fields in the VEV (5). Free fields, Wick polynomials of free fields and generalized free
fields satisfy formal Hermiticity W.a with a basis function space S. Satisfaction of A.1-6 with
formal Hermiticity W.a and totality W.b appears to be peculiar to physically trivial VEV.

Generalizations to these constructions include odd order scalar field VEV [32], compositions
that add connected functions F ◦ U ◦ U ′, additional forms in the expansion (59) of connected
functions in terms of the matrices B(p) and Υ(p), extension of dµB(s) to complex-valued
measures [32, 34], and massless particles, [35] and section 3.5.5. In constructions with multiple
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species, distinct αo, dµB(p), dµΥ(p) and coupling constants cn can be introduced for each
constituent elementary particle.

3.6 Relation to free fields

The cluster expansion (66) and the connectedness of the VEV functions provide that the con-
structed realizations of RQP are described by free fields when the supports of each argument
of the state describing functions are isolated (116). The connectedness and that at least two
∗-dual arguments and at least two function arguments appear in each contributing factor of
the n ≥ 4, n-arguments connected functions CUk,n−k provides that the contributions of the
constructed Wk,n−k reduce to contributions from the free field VEV Fk,n−k if the support of
each argument of the state describing functions f are sufficiently widely space-like separated. In
these instances, the states are readily interpreted as consisting entirely of (nearly) free particles:
the scalar products of states with the support of each argument sufficiently widely space-like
separated and localized nearly equal the scalar products for free fields. The two-point function
in (47) is a free field two-point function.

⟨Φ(f)Ω|Φ(g)Ω⟩ = ⟨Φo(f)Ωo|Φo(g)Ωo⟩o

with Φ(f) the constructed quantum field (26) and Φo(f) the free field of the same elementary
masses mκ, ⟨f |g⟩ is the scalar product (22) using the constructed VEV and ⟨f |g⟩o is the free
field, Fock space scalar product.

3.7 The basis function spaces

3.7.1 The basis function spaces P

A choice of basis function spaces P admits nontrivial VEV realizations that are unavailable in
Wightman’s original development of relativistic quantum physics [55, 61]. Wightman selected
the Schwartz tempered test functions S and in this development, unrealizable constraints on
VEV are relaxed by placing constraints on the function space. Wightman’s selection of functions
treats time similarly to space, and requires that the field operators that appear in the VEV
(5) are Hermitian. In the constructions, time is distinguished: the functions in P have Fourier
transforms with zeros on negative energy mass shells (14).
P consists of those tempered functions with Fourier transforms that vanish on the appro-

priate negative energy mass shells. The appropriate mass shell is determined for each field
component labeled κj by the mass mκj .

φn((x)n)(κ)n
∈ P(R4n)

if
φ̃n((p)n)(κ)n

= 0 when any energy p0 = −ℏcωj
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for j = 1, . . . n with

ℏcωj := ℏcω(pj) :=
√

(mκjc
2)2 + (ℏpj)2c2

from (8). The zeros are implemented using multiplier functions for tempered functions [20].
The functions φn ∈ P(R4n) are constructed in (7) as

φ̃n((p)n)(κ)n
:=

n∏
j=1

(pj0 + ωj) h̃n((p)n)(κ)n

with hn ∈ S(R4n). φ0 = h0 ∈ C. The factors (pk0 + ωk) are multipliers of tempered test
functions since they are infinitely differentiable and polynomially bounded in magnitude [20].
The remaining issue is whether A.3 is satisfied: whether P is closed under Poincaré transfor-
mations (31). The Lorentz invariance of p2 and that (a,Λ)g̃n ∈ S(R4n) for every g̃n ∈ S(R4n)
provides that P is stable under Lorentz transformations. Indeed, the Lorentz invariance of p2

provides that a zero of the appropriate form (7) is stable with proper, orthochronous Lorentz
transformation,

p′
0,j + ω′

j = (0,Λ)(pj0 + ωj) = (pj0 + ωj)
(pj0 − ωj)

(0,Λ)(pj0 − ωj)

for the Poincaré transformation (a,Λ). The final factor is regular in a neighborhood of the
negative energy mass shell. The Poincaré transformation of functions is from (31).

HP includes states characterized by Cauchy sequences of functions in P convergent in the
Hilbert space norm (21). For the constructions, these include functions

φ̃n((p)n)(κ)n
=

n∏
j=1

(pj0 + ωj) g̃n((p)n)(κ)n
)

with gn ∈ S(R3n) and, as a consequence, HP includes states characterized by state describing
functions (254) with point support over time [32]. The functions used by Lehmann, Symanzik
and Zimmermann to isolate the creation component of a field operator in their developments of
scattering for RQFT [9] are included in HP . As a consequence, LSZ expressions for scattering
amplitudes readily adapt to the constructions. Explicit scattering amplitudes are presented in
section 3.9 and [30, 32, 34, 36].

The Hilbert space completion of P includes no strictly localized states [32] but there are
essentially localized states. Functions of the form (7) are not of bounded spatial support.
The essentially localized states include states arbitrarily dominantly supported within bounded
volumes, appendix 7.16, yet with tails that do not identically vanish within any finite volume.
Functions of the form (7) are anti-local [44, 52]. The tails of the functions that describe states can
be physically negligible since minor support corresponds to unlikely and effectively unrepeatable
observations.
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Selection of the basis function spaces P overcomes the challenge of discovering VEV within
S ′ that satisfy the physical conditions of RQP for all functions from S. This long-standing
problem remains without a resolution [2, 4, 9, 29, 38, 40, 55, 58]. The realizations of rela-
tivistic quantum physics discussed here are admitted by elimination of canonical quantization’s
assertion that quantum fields (26) are elevations of corresponding classical fields and, as a con-
sequence, must be Hermitian. The lack of real functions within the completion of P precludes
Hermitian field operators but does not preclude an appropriate correspondence of classical and
quantum dynamics.

3.7.2 An alternative formulation based on S

There is an equivalent formulation with VEV modified from the forms presented in sections
3.3 and 3.4 with the Schwartz tempered functions S as the basis function space. In the equiv-
alent formulation, the VEV are necessarily non-Hermitian when interaction is exhibited. The
equivalent formulation includes the physically trivial, conventional free field VEV. The two
formulations are equivalent: basis spaces P with the VEV displayed in (13) and section 3.4; or
basis space S with augmented VEV that are non-Hermitian if interaction is exhibited.

The equivalence derives from that the multiplier functions

ω ± p0
2ω

= θ(±p0)

on mass shells ℏ2p2 = m2c2 with θ(x) the Heaviside step function. The zeros in (7) that distin-
guish the subspace P from the tempered functions S are provided by these multiplier functions
that may alternatively be applied to the VEV. Application of the multipliers to the VEV
produces the equivalent formulation with the basis function space as the Schwartz tempered
functions S as a consequence of the assignment (7). In this equivalent, alternative formulation,
totality W.b is satisfied but formal Hermiticity W.a is abandoned to achieve interaction. With
the multipliers applied to the VEV rather than to the test functions, the generalized functions
become

Wk,n−k((x)n)(κ)n
7→

k∏
j=1

n∏
ℓ=k+1

(
−pj0 + ωj

2ωj

)(
pℓ0 + ωℓ
2ωℓ

)
Wk,n−k((x)n)(κ)n

. (91)

From section 3.4, the VEV have point support on energies on mass shells, δ(p2j −m2
κj
c2/ℏ2) for

each j ∈ {1, n}, and
pj0 + ωj = 2ωjθ(pj0)

−pj0 + ωj = 2ωjθ(−pj0).
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The resulting equivalence of formulations is:

VEV Basis space

Wk,n−k((x)n)(κ)n
P

k∏
j=1

θ(−pj0)
n∏

ℓ=k+1

θ(pℓ0)Wk,n−k((x)n)(κ)n
S.

(92)

The equivalence of formulations is interesting for an analogy with a result from Reeh and
Schlieder [44, 64]. The result of Reeh and Schlieder is that states described by (2) with Hermi-
tian field operators, states described by operating on the vacuum with powers of field operators
and functions φn((x)n)(κ)n

supported solely within an open and bounded region χ, are dense
in the entire Hilbert space and not just dense for states supported within the same bounded
region χ. Although the theorem of Reeh and Schlieder is demonstrated for RQFT and not
A.1-7, the equivalent formulations in (92) display the same puzzlement with states character-
ized by functions of bounded support but an inferred global support of state descriptions. The
formulation with states labeled by the anti-local functions in P is equivalent to a formulation
that includes states labeled by functions of bounded support in S. Anti-local functions have
global support in the sense that they do not vanish over any finite volume. The equality (92)
demonstrates that the more evident anti-locality of the formulation based on P is also exhib-
ited in the formulations based on S: this suggests that anti-locality is implicit in relativistic
quantum physics.

3.8 Properties of the constructed quantum fields

In this section, the Hamiltonians for the constructions are discussed and it is demonstrated that
the fields Φ(f) constructed in section 3.4 are unbounded Hilbert space operators. Discussion
includes that the physically nontrivial fields Φ(f) are not Hermitian.

As a consequence of the limitation of the momentum support of the VEV to mass shells
and that the intersection of the supports of the VEV with the support (14) of functions from
P includes only positive energies, the Hamiltonian, the generator of time translations of a state
describing function, derives from the single-argument subspace operator (33).

e−ipj0λ = e−iωjλ (93)

using (8) and the translation is by λ = ct. This follows from (33) with the Fourier transform
(17). In an n-argument subspace of HP ,

U(λ) =

n∏
j=1

e−iωjλ (94)



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 69

implements temporal translation. The
∑n

j=1 pj are densely defined Hermitian operators in the
n-argument subspaces and correspond to total energy and momentum. Hermiticity follows
from Poincaré invariance of the scalar product (22) and Stone’s theorem [24]. In the subspace
of the vacuum, n = 0, the Poincaré transformations (31) are (a,Λ) = I. In multiple argument
subspaces, an association of single argument subspace operators with the classical dynamical
variables of corresponding particles is generally not determined. An association of the arguments
of state describing functions with the properties of classical particles necessarily applies only
for appropriate state describing functions, section 4.2, or for VEV that lack interaction. The
exhibition of interaction is described by the VEV (5): VEV determine the Hilbert space scalar
product (6) and consequently the likelihoods of observations. The n and k-argument state
describing functions are not orthogonal for n ̸= k when scalar products exhibit interaction. The
evolution of state describing functions and the exhibition of interaction are discussed further in
sections 3.9 and 4.

Satisfaction of the prospective axioms A.1-7 in section 3.2 suffices to define the constructed
quantum fields Φ(f) as Hilbert space operators. The quantum fields (26) are the multiplication
(4) of function sequences and this product preserves Hilbert space norm-equivalence classes.
The expansion (3) for states as products of the field applies for function sequences from P: the
domain of the field (26) includes this dense set of elements within HP . Demonstrated below,
the field is not a bounded operator and as a consequence, the field is at best only densely
defined, [24], section 6 and appendix 7.2.5.

For a sufficiently great space-like translation T and an element h of the null space of HP ,
satisfaction of cluster decomposition (28) in section 3.2 (axiom A.6) provides that

∥f × (g + Th)∥2 = ⟨f × g|f × g⟩+ ⟨f × g|f × Th⟩+ ⟨f × Th|f × g⟩+ ⟨f × Th|f × Th⟩
= ⟨f × g|f × g⟩+ ⟨f × g|f⟩⟨Ω|Th⟩+ ⟨Th|Ω⟩⟨f |f × g⟩+ ⟨f |f⟩⟨Th|Th⟩
= ⟨f × g|f × g⟩+ ⟨f × g|f⟩⟨Ω|h⟩+ ⟨h|Ω⟩⟨f |f × g⟩+ ⟨f |f⟩⟨h|h⟩
= ⟨f × g|f × g⟩
= ∥f × g∥2

from evaluation of the norm (21), linearity of the scalar product, translation invariance of the
scalar product (∥Th∥ = ∥h∥), the Cauchy-Schwarz-Bunyakovsky inequality (|⟨h|Ω⟩| ≤ ∥Ω∥∥h∥),
and ∥h∥ = 0. Elements of the null space are translationally invariant,

∥h− Th∥ = 0,

a consequence of the Cauchy-Schwarz-Bunyakovsky inequality, the unitarity of translation
∥Th∥ = ∥h∥, and ∥h∥ = 0. As a consequence, the field operators Φ(f) in (26) preserve equiva-
lence classes of the Hilbert space norm (21).

∥Φ(f) (g + h)∥ = ∥Φ(f) g∥
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for any ∥h∥ = 0. Repetition of this argument with (f + h)× g demonstrates that the quantum
field Φ(f) is also independent of the representative used for f ∈ HP . The constructed fields
are Hilbert space operators.

A quantum field Φ(f) (26) would be bounded if there is a real constant C such that
∥Φ(f)v∥ ≤ C ∥v∥ for all v ∈ HP , [45] and appendix 7.2.5. However, the fields Φ(f) (26)
are unbounded and consequently are not continuous anywhere within HP , [45] and section 6.

A demonstration of unboundedness for a free scalar boson field suffices for the constructions
of physical interest. Any construction that includes unconfined scalar bosons includes the free
boson field VEV. Then, the cluster decomposition axiom A.6 in section 3.2 provides that the
field Φ(f) is unbounded if the free boson field is unbounded. For free bosons, the VEV functions
result from

Fk,k((x)2k)(κ)2k
=
∑
S

k∏
j=1

W2(xj , xij )κjκij

and are otherwise zero from (45) in section 3.3. For a product function,

fn := (0, 0 . . . ,

n∏
ℓ=1

f(xℓ)κℓ
, . . .),

application of (4) and (26) results in

Φ(f)fn = (0, 0 . . . , f(x1)κ1

n+1∏
ℓ=2

f(xℓ)κℓ
, . . .).

Then the norm (21) for the free boson field provides

∥fn∥2 = n!W2(f
∗, f)n

and
∥Φ(f)fn∥2 = (n+ 1)!W2(f

∗, f)n+1

with

W2(f
∗, f) :=

Nc∑
κ1=1

Nc∑
κ2=1

W2(f
∗
κ1 fκ2)κ1κ2

from (22). Then
∥Φ(f)fn∥2

∥fn∥2
= (n+ 1)W2(f

∗, f) > C2

for any finite real constant C, some n ∈ N and some fn ∈ HP . The constructed quantum fields
Φ(f) are unbounded.
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For VEV that satisfy formal Hermiticity W.a, the adjoints of the field (26) are readily
evaluated. If the development also satisfies totality W.b, then the quantum fields are densely
defined Hermitian Hilbert space operators. In Wightman’s development or if formal Hermiticity
W.a applies to a construction in this note, the definition of an adjoint results in the identification

⟨Φ(f)∗h|g⟩ = ⟨h|Φ(f)g⟩
=W(h∗, f × g⟩
=W (h∗ × f × g⟩
=W ((f∗ × h)∗ × g⟩
= ⟨Φ(f∗)h|g⟩

(95)

with f = (0, f(x1)κ1 . . . f(x1)κNc
, 0, 0, . . .) from section 3.1.3. This identification follows from

the definitions of scalar product (22) and quantum field (26), the product of function sequences
(4), and properties of the ∗-dual of sequences (11).

W(f∗, g) =W (f∗ × g)

is formal Hermiticity W.a. Then, for VEV that satisfy formal Hermiticity W.a, the adjoint of
the field is

Φ(f)∗ = Φ(f∗).

For VEV that satisfy formal Hermiticity W.a, the field is Hermitian, Φ(f)∗ = Φ(f), for real
function sequences f∗ = f . This defines a real sequence as f∗ = f . In Wightman’s original
development [9, 32], totality W.b applies and the basis space of functions is the ∗-involutive
S = S∗. With complex coefficients, real functions are dense in S: every h ∈ S decomposes as

h = h1 + ih2

for real h1, h2 ∈ S, 2h1 = h+ h∗ and 2h2 = −i(h− h∗). For VEV and function sequences that
satisfy Wightman’s axioms, the field is densely defined and Hermitian. These VEV include the
physically trivial free fields.

For constructions based on the support constrained function sequences P, any real function
sequence f with f0 = 0 is in the equivalence class of zero, [32] and section 3.7. For f ∈ P and
VEV that satisfy formal Hermiticity W.a,

Φ(f)∗g = f∗ × g ̸∈ P

unless g = 0 since P ∩ P∗ = {(c, 0, 0 . . .)} with c ∈ R. P includes too few functions for the
∗-dual to be an automorphism. The constructed physically nontrivial fields are not Hermitian
even if formal Hermiticity is satisfied due to the necessity of limited support for P to implement
nonnegativity of energies (14) and include n ≥ 4, n-argument connected functions such as (13).
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The support constraints imply that the algebra of function sequences P is not ∗-involutive and
Φ(f)∗g ̸∈ HP if g ∈ HP . The identification in section 3.3 and [30] of creation and annihilation
operators for free fields illustrate this result. For f ∈ P(R4) and free field VEV, the field
operators Φo(f) in (26) equal the non-Hermitian creation operators Φ+

o (f). The adjoints of
Φ+
o (f) are the annihilation operators Φ−

o (f
∗) from (95). But, Φ−

o (f) = 0 for f ∈ P(R4) and
this precludes Hermiticity of the field, Φ+

o (f) = Φo(f) ̸= Φo(f
∗) = Φ−

o (f
∗) for the energy

support constrained functions f ∈ P(R4) [30].
Generally, densely defined Hermitian adjoints of the quantum fields are precluded by axiom

A.7. For physically nontrivial constructions, axiom A.7 is generally required to implement
regularity A.1: the divergent two-point function that results from extrapolation of (55) is
eliminated using (29). If the quantum fields in (5) were Hermitian, then A.7 provides that

⟨Φ(fn)∗ . . .Φ(f2)
∗Φ(f1)

∗Ω|g⟩ = ⟨Φ(fn) . . .Φ(f2)Φ(f1)Ω|g⟩

= ⟨Φ(f1)∗Ω|Φ(f2) . . .Φ(fn)g⟩

= ⟨Φ(f1)Ω|Φ(f2) . . .Φ(fn)g⟩

= ⟨Φ(f1)Ω|f2 × . . . fn × g⟩

= 0

(96)

from the definition of adjoint operator and the assumed Hermiticity. Then, repeating the devel-
opment with any number of factors, A.7 implies that any power of the quantum field vanishes
if Hermitian field operators were realized and the multiple argument connected functions are
included. No nontrivial quantum field is Hermitian if A.1-7 are satisfied. A.7 is satisfied for
free field VEV if the basis function sequences are limited to P: the free field VEV (45) extend
to (39) with the extension of P to S.o

Do realizations with VEV such as (13) exhibit interaction “at a point” or are they string
theories? Of course, such geometric characterizations are not intrinsic to quantum mechanics
but are motivated by a predisposition for classical description. Neither functions of point
support nor functions of string support are included among the state describing functions in
the constructions. The constructed Hamiltonians (93) generate temporal translations in the
Hilbert space realizations of the Poincaré group. The Hamiltonian is determined by realization
of the Poincaré group rather than a correspondence with the classical dynamics of points or
strings. These Hamiltonians coincide with what is identified in the canonical formalism as free
field Hamiltonians even though interaction is manifest, sections 3.9 and 4, and [30, 32, 34]. The
constructed VEV are solutions to the Klein-Gordon equation yet exhibit interaction. Mass shell
singularities of the VEV together with a lack of constraints that set momenta equal in pairs
result in nontrivial scattering. Canonical formalism-compliant solutions to the Klein-Gordon

oIn RQFT, if Φ(f)Ω = 0 for a dense set of real functions f = f , then Φ(f) = 0, (lemma 20.1 [9]). A.7 is
expressed with the necessarily complex functions f ∈ P.
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equation necessarily exhibit trivial physics [9, 55]. These demonstrations do not apply with the
revised axioms: interacting quantum fields are not necessarily densely defined Hermitian Hilbert
space operators. The constructed scattering amplitudes that coincide with Feynman series at
weak coupling demonstrates that solutions to the Klein-Gordon equation are of interest. For
VEV that are solutions to the Klein-Gordon equation, interaction is inconsistent with Hermitian
field operators. This suggests that interacting relativistic fields are precluded by canonical
quantization’s quantum-classical correspondence. The constructions suggest a strengthening of
the Haag (Haag-Hall-Wightman-Greenberg) theorem to that Poincaré covariance, locality and
positive energies together with an exhibition of interaction preclude Hermitian field operators.

The pressure for conformity is enormous. I have experienced it in editors’ rejection
of submitted papers, based on venomous criticism of anonymous referees. The
replacement of impartial reviewing by censorship will be the death of science. –
Julian Schwinger.

3.9 Scattering amplitudes

Interaction is exhibited in changes to momenta and particle numbers. A lack of orthogonality of
the descriptions of states with differing particle numbers and momenta implements interaction.
From Born’s rule, scalar products (22) provide the state transition likelihoods and to describe
relativistic physics, these likelihoods must be Poincaré invariant. The state descriptions are
covariant. In the constructions, although the time translation of an n-argument function is
an n-argument function, with the constructed scalar products, n-argument function do not
necessarily correspond to n elementary particles nor are the momenta necessarily equal in pairs.
States with k ̸= n-arguments become orthogonal to n-argument states when the supports of
the state describing functions are widely space-like separated. Compton wavelengths (9) set the
scale for wide separation. Connected contributions to VEV such as (13) implement interaction
but their contributions become negligible as the supports of the arguments of state describing
functions become widely space-like separated. Satisfaction of the cluster decomposition axiom
A.6 provides that a scalar product is described by VEV approximated by free field VEV if the
supports of each argument of a state describing functions become widely space-like separated.
Free fields have natural interpretations as classical particles [7, 9, 23, 51, 60]. As initially
localized and widely space-like separated supports propagate and approach overlap, exhibition
of interaction manifests in the state transition amplitudes: observations of distinct momenta
and particle numbers become likely.

Scattering amplitudes are proportional to large time difference transition amplitudes eval-
uated in a limit with incoming and outgoing states described as plane waves [7, 23, 51, 60].
For the example of a single neutral scalar field and states described by product functions
fn((x)n) =

∏
j ℓ(xj ;λj ,qj), the scattering amplitudes are

Sn,m := lim
λ→∞

⟨U(λ)ℓ(λ,qn+1) . . . ℓ(λ,qn+m)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qn)⟩
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with U(λ) the unitary operator (94) that translates the states in time. The parameters λj ,qj
in the functions control an energy dependent phase and center the momentum support, respec-
tively. The designation ℓ(λj ,qj) indicates the values of the parameters of the state describing
functions ℓ(xj ;λj ,qj). The LSZ (Lehmann-Symanzik-Zimmermann) expressions [9] for scatter-
ing amplitudes use functions with Fourier transforms

ℓ̃(pj ;λj ,qj) := eipj0λj (ωj + pj0)f̃(pj − qj) (97)

with λj a real parameter, qj a momentum vector and f̃(p) ∈ S(R3) is a Schwartz tempered test
function. From section 3.7, ℓ(xj ;λ,qj) is a function in the completion HP of P. A convenient
choice of test function are Gaussian functions

f̃(p) =

(
L2

π

)3/2

e−L2p2
> 0. (98)

These f̃(p) are point-wise nonnegative delta sequences heavily weighted near zero momentum
when nearing the plane wave limit L→∞ and∫

dp f̃(p− q) = 1.

The LSZ scattering amplitudes are VEV of products of fields

Φ(ℓ(λ,q)) :=

∫
dp (ω + p0)e

ip0λf̃(p− q) Φ̃(p)

in this scalar field example. The VEV functions W̃k,n−k((p)n) are from (27) and section 3.4.
Temporal translations of the field evaluated with the state describing functions (97) are in-
dependent of time with the selection of the state describing function parameter λj equal to
λ.

U(λ)Φ(ℓ(λ,q))U(λ)−1 =

∫
dp (ω + p0)e

−i(ω−p0)λf̃(p− q) Φ̃(p)

= Φ(ℓ(0,q))

due to the limitation of the spectral support of the constructed VEV to mass shells.
In another notation,

U(λ)Φ(ℓ(λ,q))U(λ)−1 = i

∫
dx û(λ,x)

↔
∂ o Φ(λ,x)

with
f(x)

↔
∂ o g(x) := f(x)ġ(x)− ḟ(x)g(x),
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ḟ(x) the first time derivative of f(x) and

û(λ,x) :=
1

2π

∫
dp eiωλe−ip·xf̃(p− q)

is a smooth solution of the Klein-Gordon equation.
For the Gaussian functions (98), the plane wave scattering amplitudes are the limits

lim
L→∞

Sn,m = lim
L→∞
λ→∞

⟨U(λ)ℓ(λ,qn+1) . . . ℓ(λ,qn+m)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qn)⟩

= lim
L→∞

⟨ℓ(0,qn+1) . . . ℓ(0,qn+m)|ℓ(0,q1) . . . ℓ(0,qn)⟩.

Evaluation of the mass shell deltas in the VEV from section 3 simplify the expression and the
resulting quadrature is readily evaluated in the plane wave limit [32].

lim
L→∞

Sn,m = lim
L→∞

cn+m

(
L√
π

)3(n+m) ∫
d(p)n+m 2n+m

n+m∏
j=1

ωje
−L2(pj−qj)

2

×W̃n,m((−p)n, (p)n+1,n+m)

= 2n+m
n+m∏
j=1

ω(qj)W̃n,m((−q)n, (q)n+1,n+m).

(99)

This introduced a convenient notation

W̃n,m((−p)n, (p)n+1,n+m) (100)

for the VEV functions after evaluation of the mass shell delta functions, and ω(qj) is from (8).
Each

δ(p2k − λ2c) 7→
δ(pk0 ± ωk)

2ωk

and the sign is determined by whether pk is the argument of a function or the ∗-dual of a
function. Each energy is evaluated on the appropriate mass shell. The signs on the energies
pk0 = ±ωk match the explicit signs of the momenta. Non-forward amplitudes result if only the
connected contribution CW̃n,m of the VEV is considered.

For the n = 4 example connected function (13), the non-forward, elastic scattering amplitude
is

S2,2 = c4δ(ω(q1) + ω(q2)− ω(q3)− ω(q4))δ(q1 + q2 − q3 − q4). (101)

This amplitude coincides up to a factor of i with the first order expansion from a Feynman
series with an interaction Hamiltonian that includes a single neutral scalar field : Φ4 : term
[30, 34]. This amplitude corresponds with a Yukawa-like equivalent potential in first Born
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approximation. The incoming momenta are q1,q2 and the outgoing momenta are q3,q4. The
scattering amplitudes for (13) correspond to the first contributing order for an interaction
Hamiltonian density Hint(x) =

∑
ℓ aℓ : Φ(x)

ℓ : with ℓ ≥ 4 and aℓ = cℓ (2π)
2ℓ−4/ℓ!. cℓ is from

(54). The scattering cross sections of the constructions that realize quantummechanics associate
with first order (weak coupling) contributions from Feynman series. In cases with nonzero spin,
for example, Compton scattering, the cross sections deviate from first order Feynman series
results for extremely relativistic exchange momenta (small distances) [34].

The scattering amplitudes are independent of time in the plane wave limit [32]. In this
development, the propagation of the support of localized states can be followed through inter-
mediate times. The lack of time dependence in finite time, plane wave limits is understood
from a Hamiltonian that contributes only a phase in the plane wave limit and that plane waves
uniformly cover all space.

4 Quantum-classical correspondences

We have always had a great deal of difficulty understanding the world view that
quantum mechanics represents. At least I do, because I’m an old enough man that
I haven’t got to the point that this stuff is obvious to me. Okay, I still get nervous
with it. . . You know how it always is, every new idea, it takes a generation or two
until it becomes obvious that there’s no real problem. I cannot define the real
problem, therefore I suspect there’s no real problem, but I’m not sure there’s no
real problem. – Richard Feynman, 1982, p. 471 in [17].

Understanding quantum mechanics as the description of nature has been a persistently contro-
versial topic [5, 8, 16, 43, 50, 56, 63]. Quantum mechanics is often regarded as “strange,” perhaps
referring to the incompatibility of the quantum description of nature with well-established clas-
sical understandings. Emphasized by the Einstein-Podolosky-Rosen (EPR) paradox, [16] and
appendix 7.6, the quantum description of nature contradicts classical concepts. In the classical
concept, every particle is distinguishable and described by determined classical dynamical vari-
ables. In the quantum description, particles are indistinguishable, their locations and momenta
are never simultaneously described with arbitrary precision, and state descriptions are elements
of Hilbert spaces that linearly expand in terms of other state descriptions. Although quantum
effects like the Heisenberg uncertainty bounds are difficult to observe with massive bodies,
Schrödinger’s cat paradox [50] illustrates that quantum mechanics can not be relegated to a
“strange” microscopic world. A quantum-classical correspondence develops approximations for
quantum mechanics using classical descriptions. A quantum-classical correspondence applies
when the classical description suffices.

Quantum-classical correspondences are exhibited in scattering amplitudes for both the con-
structions and RQFT. Scattered products are perceived as classical particles. This quantum-
classical correspondence identifies classical dynamical variables that represent the support of
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appropriate state describing functions: a classical description is applied to the perception of a
quantum state. Widely studied quantum-classical correspondences are scattering amplitudes.
Cluster decomposition A.6 provides that isolated initial and final scattered states are readily in-
terpreted as free particles. The quantum-classical correspondences from scattering amplitudes
include massless particles, inherently relativistic. Scattering amplitudes enable comparison
of the constructions with Feynman series. Scattering amplitudes, including approximation of
Feynman series, are provided in [30, 32, 34] and section 3.9.

The discussion in section 2 illustrated that the presumed, exacting quantum-classical corre-
spondence of canonical quantization imposes unrealizable constraints on realization of relativis-
tic quantum physics. In this section, realizable correspondences of classical descriptions and
appropriate state descriptions |φ⟩ ∈ HP (2) are developed. Rather than assert canonical quan-
tization, the quantum-classical correspondences derive from analysis of the support of state
describing functions. Correspondences are conditioned on properties of the state describing
functions. There is a quantum-classical correspondence if the state description is “macro-
scopic,” but if there is significant spatial overlap of supports, or entanglements, or particle
creation, then a quantum-classical correspondence need not apply.

The richness of quantum mechanics manifests in the quantum-classical correspondences and
a significant effort to characterize these correspondences remains. Several distinct classical dy-
namical descriptions correspond to one construction. Scattering amplitudes and nonrelativistic
brief duration state transition amplitudes generally correspond to distinct classical dynamical
descriptions. That is, one quantum dynamical realization is perceived with multiple scenario-
dependent classical descriptions. None of the classical correspondences necessarily apply uni-
versally. The quantum dynamics is determined by the constructed VEV, section 3.

Finite interval, nonrelativistic state transition amplitudes are the primary focus of this sec-
tion. For states that are well-represented by finite mass, point-like particles with nonrelativistic
relative velocities over sufficiently brief intervals, evolution of the support of appropriate state
describing functions is approximated by classical Newtonian mechanics with −g/r pair po-
tentials. Presumably, classical geometrodynamics and electrodynamics emerge from improved
analysis.

In the designations of appendix 7.1, quantum mechanics is described by Dirac-von Neu-
mann axioms I-III. Dirac-von Neumann axioms IV and V describe the canonical quantization
of nonrelativistic physics and are not applied to the constructions. The quantum-classical cor-
respondence described in axioms IV and V is replaced with a more appropriate correspondence
for relativistic physics. Appropriate state describing functions are developed in this section.
Nature is described by equivalence classes of functions and the physically significant features
of these functions are Lebesgue summations over measurable subsets of R3. A correspondence
of Lebesgue measurable subsets with points x or p ∈ R3 is necessarily inexact. This adopted
quantum-classical correspondence is suited to relativity and results in the decisive revision to
the mathematical development of RQP. The correspondence, relaxed from canonical quantiza-
tion, generalizes Erwin Schrödinger’s 1926 study of the linear harmonic oscillator [48] and Paul
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Ehrenfest’s extended developments [14, 41]: classical dynamical variables are representatives
for the support of appropriate state describing functions. For the most classical particle-like
descriptions, the quantum mechanical description is as well-represented by classical dynamical
variables as possible: Heisenberg uncertainty lower bounds are achieved.

The quantum-classical correspondence that is the primary topic of this section appears in
Schrödinger’s 1926 study of nonrelativistic linear harmonic oscillators [48]. The supports of
selected solutions to the Schrödinger equation are well-represented by corresponding classi-
cal dynamical variables. In 1+1 spacetime, particular Gaussian functions ψ(x, λ) satisfy the
Schrödinger equation.

ψ(x, ct) = exp

(
−(x−A coswt)2

4σ2
− iβx sinwt

ℏ
− iϕ(t)

)
satisfies (

− ℏ2

2m

d2

dx2
+

1

2
kx2
)
ψ = iℏ

dψ

dt

and the solution is characterized by a mass m, spring constant k, and oscillation amplitude A,

σ2 =
ℏ

2
√
mk

, w =

√
k

m

β =
√
mkA, ϕ(t) =

w

2
t− kA2

4ℏw
sin 2wt.

The breadth of support of ψ(x, ct) over x is described by σ and w is the oscillation frequency.
Selected as the peak likelihood, the representative for the support of this function is the tra-
jectory

x(λ) = A coswλ/c

of classical linear harmonic motion. The quantum-classical correspondence is most evident
when the spread of support is small with respect to the amplitude of the motion, σ2 ≪ A2. As
σ2/A2 → 0, the classical representative becomes essentially indistinguishable from the quantum
description. As m→∞,

σ2 =
ℏ

2
√
mk
≪ A2 =

2E

k
(102)

with the total classical energy E = 1
2kA

2 a constant of the motion. The support of the function
ψ(x, λ):

1. persists along classical trajectories with the evolution of time λ:

2. the support of the state that exhibits the classical correspondence has a particular spread
σ determined by k and m;
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3. these ψ(x, λ) are not eigenfunctions of the Hamiltonian, but are among the most-classical
particle-like descriptions: the state describing functions meet the Heisenberg lower bound
on the breadths of support over location and momentum;

4. and any classical energy E can be matched by a quantum mechanical description, a
function ψ(x, ct).

This quantum-classical correspondence does not apply for all state describing functions. For
example, the supports of the energy eigenfunctions of a linear harmonic oscillator,

en(x, ct) = Hn(αx) exp

(
−i(n+

1

2
)wt− 1

2
α2x2

)
with Hn the nth Hermite polynomial [1] and

α2 =

√
mk

ℏ
,

do not follow classical trajectories of linear harmonic motion, except for n = 0 and A = 0. The
energy eigenfunctions exhibit quantized energies

E = (n+
1

2
)ℏw.

For the energy eigenfunctions, only a phase, and not the support of the state describing func-
tions, evolves with time.

To simplify development and notation, discussions within this section are often limited to
a single, neutral scalar field, Nc = 1.

4.1 The support of state describing functions

The physically relevant support of states is determined by likelihoods of observation. Likeli-
hoods are determined from Born’s rule to be the squared magnitudes of scalar products (22) for
state describing functions φn ∈ HP . From A.3, Born’s rule likelihoods are invariant to Poincaré
transformations and state descriptions are covariant. The spatial support of φn((x)n) follows
from the real-valued function over (y)k,

|⟨(y)k|φn⟩|2 (103)

with |(y)k⟩ described by a k-argument state describing function from a delta sequence within
HP .

|(y)k⟩ ≈ |
k∏
j=1

δ(xj0)δ(xj − yj)⟩, |(y)k⟩ ∈ HP .
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The support of |(y)k⟩ is concentrated very near (y)k ∈ R3k and is at time zero in one selected
reference frame. Due to the very localized support of |(y)k⟩, the momentum domain support
includes very relativistic momenta. For the scalar products constructed in section 3, state
describing functions φn((x)n) include descriptions of k ̸= n particles. And, |(y)k⟩ will not
have strictly limited spatial support: HP includes only anti-local functions [32]. Similarly, the
momentum support of φn((x)n) derives from

|⟨(q)k|φ̃n⟩|2 (104)

with |(q)k⟩ descrbed by a k-argument function within the Fourier transform domain of HP with
support concentrated very near (q)k.

|(q)k⟩ ≈ |
k∏
j=1

θ(pj0)δ(pj − qj)⟩, |(q)k⟩ ∈ HP .

The spatial support of |(qk)⟩ approaches R3 but k = n for nonrelativistic momenta.
Of particular interest for nonrelativistic approximations are state describing functions within

the Hilbert space completion HP of P described at a single time. For every f̃n((p)n) ∈ S(R3n)
that is a function with dominant support centered on (p)n = 0 that has an inverse Fourier
transform with dominant support centered on (x)n = 0, there is state describing function

φ̃n((p)n) =
n∏
j=1

eipj ·yj (pj0 + ωj)f̃n((p− q)n). (105)

The inverse Fourier transform of φ̃n is

φn((x)n) =

∫
d(p)n
(2π)2n

n∏
j=1

eipjxjeipj ·yj (pj0 + ωj)f̃n((p−q)n)

=

∫
d(p0)n

(2π)
n
2

∫
d(p)n

(2π)
3n
2

n∏
j=1

(
−i ∂

∂xj0
+
√
λ−2
c −∆j

)
eipj0xj0e−ipj ·(xj−yj)f̃n((p−q)n)

= (2π)
n
2

n∏
j=1

(
−i ∂

∂xj0
+
√
λ−2
c −∆j

)
e−iqj ·(xj−yj)δ(xj0)fn((x−y)n)

(106)

with ∆j the Laplacian for argument xj ∈ R3, and the derivative of δ(t) is a generalized function
[19]. φn((x)n) is a function within HP . The spatial support of φn((x)n) is centered on the yj
and the momentum support is centered on the qj . The completion of P(R4n) to HP includes
functions such as (106) that are generalized functions of point support over time and test
functions over space. These are the functions of interest in nonrelativistic physics, descriptions
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of functions over space at a specified time. Time generally is kept externally to the observed
and perceptions are assigned a time in a particular coordinate frame.

For illustration, from (105) and (106), delta sequences within HP include normalizations of

g̃k((p)k) =
k∏
j=1

eipj ·yj (pj0 + ωj) e
−L2(pj−qj)

2
. (107)

The g̃k((p)k) in (107) describe |(y)k⟩ for L > 0 as L→ 0. g̃k((p)k) describes a |(q)k⟩ for L→∞.
The energy-momentum support of the VEV constructed in section 3 is limited to mass shells.

As a consequence, definition of the time and spatial support of functions φn((x)n)(κ)n
derived

from the inverse Fourier transform of a φ̃n((p)n)(κ)n
is ambiguous. Energy and momentum

variables can be freely substituted

pj0 ←→
√
λ−2
cj + p2

j .

The inverse Fourier transform of a momentum domain state describing function depends on
whether one considers any pj0 an independent energy variable or a function of the momentum.
In this section, a convention for the spacetime support of φn is selected.

From (7), function sequences φ and ψ ∈ P consist of functions

φ̃n((p)n) =

n∏
j=1

(ωj + pj0)f̃n((p)n)κ1...κn

ψ̃n((p)n) =

n∏
j=1

(ωj + pj0)g̃n((p)n)κ1...κn

with fn, gn ∈ S(R4n). Due to the form of the VEV constructed in section 3, the scalar products
(22) expressed in the momentum domain are

⟨φ|ψ⟩ =
∑

n,m,(κ)n+m

∫
d(p)n+m ⟨Φ̃(p1)κ1 . . . Φ̃(pn)κnΩ|Φ̃(pn+1)κn+1 . . . Φ̃(pn+m)κn+mΩ⟩

×φ̃n(−p1, . . .− pn)κ1...κn ψ̃m(pn+1, . . . pn+m)κn+1...κn+m

=
∑

n,m,(κ)n+m

∫
d(p)n+m Tn,m((p)n+m)(κ)n+m

δ(p1 + p2 . . .+ pn+m)
n+m∏
j=1

δ(pj0 − ωj)

× f̃n(p1, . . . pn)κ1...κn g̃m(pn+1, . . . pn+m)κn+1...κn+m

(108)

from (6), (11), (17), (27), and the Fourier transform of generalized functions [19]. The VEV
functions Tn,m((p)n+m)(κ)n+m

are composed in a cluster expansion (71) from cnQk,n−k((p)n)(κ)n
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in (47) with the mass shell delta functions and the energy-momentum conservation delta func-
tion factored out. From (8),

δ(p22 − λ−2
cj )(ωj + pj0) = δ(pj0 − ωj).

HP includes limits of P and these limits include fn, gn ∈ S(R3n) with no energy dependence.
In (108), all energies pj0 are constrained to positive mass shells

pj0 = ωj

after reflection of the n four-dimensional summation variables (p)n 7→ (−p)n for the ∗-dual
functions φ̃n. This energy-momentum constraint is the origin of the ambiguity in the spacetime
support estimated from the state describing functions.

Isolating consideration to one function argument and one field component, let

φ̃(pj) = (ωj + pj0)f̃(pj)

describe argument j for field component κj . Setting every pj0 = ωj , the inverse Fourier trans-
form of the state describing function appearing in the scalar product (108) is∫

dp

(2π)2
eipxf̃(ω(p),p) =

∫
dp0

(2π)
1
2

eip0(x0−λ)
∫

dp

(2π)
3
2

e−ip·xeiω(p)λh̃(p)

= (2π)
1
2 δ(x0 − λ)h(λ,x)

(109)

with designations
h̃(p) := f̃(ω(p),p)

and

h(λ,x) :=

∫
dp

(2π)
3
2

e−ip·xeiω(p)λh̃(p). (110)

eiω(p) is the time translation operator (94) that applies to argument j. The transform (110) is
evaluated for convenient selections of h̃(p) in appendix 7.10. (109) illustrates a dependence on
the selection of a time λ. Substitutions of p0 for ω(p) in f̃(ω(p),p) lead ambiguously to state
describing functions that are functions over time and not of temporal point support.

4.2 States with a quantum-classical correspondence

Verified daily, classical dynamical variables provide accurate representatives for the quantum de-
scription when the support of states is “macroscopic,” that is, classical particle-like. A quantum
state description is classical particle-like if its spatial support is isolated and well-represented by
a single location, the support of its Fourier transform is well-represented by a single momentum,
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and the support is not entangled. The Michelson interferometer illustrates that localization is
necessary, and an atom illustrates the necessity of isolation to apply a quantum-classical cor-
respondence, appendix 7.5. The EPR paradox [16] illustrates that descriptions must not be
entangled to apply a quantum-classical correspondence. Nevertheless, if the dominant support
of states is classical particle-like, an approximate and conditional correspondence of classical and
quantum state descriptions substitutes for the canonical quantization-conjectured elevations of
classical dynamical variables to densely defined Hermitian operators.

Dominant support, localization, descriptive momenta, isolation and nonrelativistic support
are described below for the instance of one neutral scalar field and more generally, the definitions
apply for each constituent function labeled by field components κj .

Dominant support: The dominant support of a state describing function φn((x)n) is
evaluated by comparison of the supports within distinct finite volumes within R3. A convenient,
but generally loose, characterization for the dominant support of the jth argument of φn((x)n)
is to find the spherical volume V (uj) centered on location uj with∫

V (uj)
dyj |⟨(y)k|φn⟩|2 = (1− ϵ)

∫
R3

dyj |⟨(y)k|φn⟩|2 (111)

with (y)k the delta function-like element of HP in (103). In the understanding of section 4.1,
this is the support at time zero. 1 − ϵ is the relative likelihood that a position measurement
for the jth argument will lie within the volume V (uj). Designate the radius of this sphere
V (uj) by Rj . The dominant support V (uj) and representative location uj achieve a specified
likelihood 1− ϵ with the minimal Rj .

Similarly, the dominant momentum support is characterized by the volume U(wj) centered
on a momentum wj in the Fourier transform domain such that∫

U(wj)
dqj |⟨(q)k|φ̃n⟩|2 = (1− ϵ)

∫
R3

dqj |⟨(q)k|φ̃n⟩|2 (112)

with (q)k the delta function-like element of HP in (104). Designate the radius of this sphere
U(wj) by Qj . The dominant momentum support U(wj) and representative momentum wj

achieve a specified likelihood 1− ϵ with the minimal Qj .
Localization: The jth argument of a state describing function φn((x)n) is localized near

yj if the radius Rj of the dominant support is within a tolerance Lj set by a consideration of
interest.

Lj > Rj .

From the development of nonrelativistic support (120) below, to be nonrelativistic,

Rj ≫ λc.

If the jth argument of φn((x)n) is localized near uj , then

⟨ψn|g(xj)φn⟩ ≈ g(uj)⟨ψn|φn⟩ (113)
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for multiplier functions g(x) of slow variation within the dominant support of φn((x)n). uj is
the representative value of the argument xj , the jth argument of φn((x)n). g(xj)φn designates
the n-argument function

g(xj)φn(x1, x2, . . . xj , . . . xn).

One example consideration of interest setting the scale is an Rj small with respect to the
separation of slits in Young’s double slit: the observation is propagation through the slits
followed by localized detection far behind the slits.

From the connectedness of constructed VEV (46), if the spatial support of a state describing
function φn is localized, then the localized support is indicative of the physically relevant spatial
support (103). Although the dominant support of the state describing function φn((x)n) does
not equal the physically relevant support, it does characterize the physically relevant dominant
support. The physically relevant support (103) of a state describing function φn((x)n) is

⟨(y)k|φn⟩ =

∫
d(x)k+n Wk,n((x)2n)

k∏
j=1

δ(xj0)δ(xj − yj)φm(xk+1, . . . xk+n)

=

∫
d(x)k+1,k+n Wk,n((0,y)k, (x)k+1,k+n)φm(xk+1, . . . xk+n)

(114)

from the scalar product (22) in the single, scalar field case for selected k, n and assuming k
corresponding elementary particles. The connectedness of VEV provides that the summation
is dominated by points within a limited distance from (y)k, and then if the support of φn
considered at times xj0 = 0 (109) is localized, the support of ⟨(y)k|φn⟩ is localized (113) about
(y)k.

Descriptive momenta: Similarly, the momentum support of the Fourier transform φ̃n((p)n)
of a state describing function may be “localized.” That is, the description of the momenta may
be well-characterized by one representative momentum wj . If the jth argument of a state
description φ̃n((p)n) is descriptively supported near a representative momentum wj , then

⟨ψ̃n|g̃(pj)φ̃n⟩ ≈ g̃(wj)⟨ψ̃n|φ̃n⟩ (115)

for multiplier functions g̃(p) of slow variation within the dominant support over pj of φ̃n((p)n).
Isolated: A localized argument xj is isolated if there is little likelihood that any neighbor-

hood that lies within the dominant support is included within the dominant support of any
other argument of the state describing function. The support of a localized argument xj is
isolated if

(uj − uℓ)
2 > Rj +Rℓ (116)

for all ℓ ∈ {1, n} with ℓ ̸= j. If isolation is satisfied, only the support of the jth argument
associates to great likelihood with a volume of space near the representative uk.

The most classical particle-like descriptions meet the Heisenberg uncertainty bound for the
spreads over the localization and descriptive momentum. The association of spatial volumes



4 QUANTUM-CLASSICAL CORRESPONDENCES 85

with classical dynamical variables occurs on relatively large spatial scales, for spatial supports
with extents large with respect to Compton wavelengths.

The quantum-classical correspondence discussed in this section applies only as long as the
support of a state description remains isolated and well-represented by a single location and
momentum, and particle number is conserved. The nonrelativistic quantum-classical corre-
spondences discussed below are limited to finite mass elementary particles, m > 0. Inherently
relativistic massless particles are included by the constructions in section 3 but not in this
discussion of nonrelativistic quantum-classical correspondences.

Nonrelativistic classical trajectories uj(λ) are spatial vectors,

uj(λ) = (ujx (λ), ujy(λ), ujz (λ)),

defined in a particular reference frame. Associated spacetime vectors uj(λ) are designated

uj(λ) = (0, ujx (λ), ujy(λ), ujz (λ)). (117)

Derivatives with respect to the temporal parameter λ = ct are designated

u̇j(λ) :=
duj(λ)

dλ
. (118)

Trajectories are twice differentiable curves in R3 that specify one classical body’s history of
locations uj(λ) and velocities u̇j(λ). Momenta ℏwj(λ) are Euclidean three-vectors associated
with the particle trajectories uj(λ).

λcwj(λ) := γj u̇j(λ)

≈ u̇j(λ)
(119)

with

γj :=
1√

1− u̇2
j

and the approximation applies in nonrelativistic (u̇2
j ≪ 1) instances. λc is the reduced Compton

wavelength (9) for the appropriate mass determined by field component. The energy-momentum
Lorentz vector pj := (ω(wj),wj) with ω(p) from (8).

Nonrelativistic: Nonrelativistic physics applies if the momentum domain supports of the
state describing functions φn are sufficiently limited. The support of an argument pj is non-
relativistic if there is a boost to a reference frame such that the dominant momentum support
satisfies ℏ2p2

j ≪ (mc)2 for any momenta pj within the dominant support. In this frame,

p2
j ≪ λ−2

c

⟨φn|ωjφn⟩ ≈ ⟨φ̃n|(λ−1
c + 1

2λcp
2
j )φ̃n⟩

wj(λ) ≈ λ−1
c u̇j(λ).

(120)
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A state describing function φn is nonrelativistic if there is a single reference frame that sets the
support of all arguments of interest to nonrelativistic.

The dominant support of each argument of the state describing function (149) satisfies

∥pj − 2wj(λ)∥ ≤ Qj .

If
λc ∥pj − 2wj(λ)∥ ≪ 1

and if the classical trajectory is nonrelativistic, λc∥w(λ)∥ ≪ 1, then the dominant support is
nonrelativistic. For a nonrelativistically supported function, the dominant momentum support
satisfies

1

Qj
≫ λc.

For significant likelihoods, the Heisenberg uncertainty bound provides that

QjRj >
1

2

for the radii of the dominant supports. Then,

Rj >
1

2Qj
≫ λc.

Cluster decomposition A.6 provides that if localized supports are sufficiently isolated, then
only two-point VEV contribute in the scalar product (22).

⟨φ|ψ⟩ =
∑
n,m

⟨φn|ψm⟩

≈
∑
n

⟨φn|ψn⟩.

If the construction includes only a single elementary mass (Nc = 1) and the support of every
argument of two functions φn, ψm is nonrelativistic, or if the momentum support is sufficiently
nonrelativistic and the masses mκ are not rational multiple related, then

⟨φn|ψm⟩ = 0 if n ̸= m.

In nonrelativistic, single mass instances, energy is not conserved if n ̸= m since from (120),
ωj ≈ λ−1

c + 1
2λcp

2
j and λ−1

c ≫ λcp
2
j for all constituent j. Then there is no solution with

conserved energy, kλ−1
c = nλ−1

c , except for n = k.
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Appropriate functions: If f̃n((p)n, λ) ∈ S(R3n) is a function descriptively supported
near (p)n = 0 with inverse Fourier transforms localized near (x)n = 0, then state describing
functions

φ̃n((p)n;λ) =
n∏
j=1

eipj ·uj(λ)(pj0 + ωj)f̃n((p−w(λ))n;λ) (121)

have spatial supports centered on uj(λ) and momentum supports centered on wj(λ). The more
closely the breadth of the supports of f̃n((p)n, λ) satisfy the Heisenberg uncertainty bound,
the more appropriate the state describing functions (121) are for a quantum-classical corre-
spondence. Additional requirements are that the description lacks entanglement and the uj(λ)
are sufficiently space-like separated to satisfy isolation. With appropriate selections for uj(λ),
wj(λ) and f̃n((p)n, λ), the support of (121) is nonrelativistic (120), isolated (116), localized
(113) and has descriptive momenta (115). ωj is from (8). From the Fourier transform pair (34)
with (35), (121) has an inverse Fourier transform (17),

φn((x)n;λ) :=
n∏
j=1

(
−i ∂
∂xj0

+

√
λ−2
c −∆j

)
e−iwj(λ)·(xj−uj(λ))fn((x− u(λ))n;λ) (122)

with ∆j the Laplacian in R3 for argument xj . With the understanding of support from section
4.1, the inverse Fourier transforms (17) of (121) have point support at time zero, each xj0 = 0.
In (122), classical trajectories uj(λ) = (0,uj(λ)) are representatives for the volumes of dominant
spatial support, and the ℏwj(λ) are representatives for the dominant momentum supports. The
temporal parameter λ appears in fn in (122) to include a continuous deformation of fn((x)n;λ)
with time evolution (33). Typically the unitary time evolution of φn((x)n; 0) results in a growth
in the breadth of support of fn((x)n;λ): classically, a spreading of the spatial support over time
follows from uncertainty in the initial momenta. Example classical particle-like state describing
functions include Gaussians with spreads determined by a complex λ-dependent parameter.
The functions φn((x)n;λ) are infinitely differentiable with respect to uj(λ) and wj(λ).

Position and momentum eigenfunctions are not suitable for quantum-classical correspon-
dences. These eigenfunctions are among the least classical particle-like by the consideration
that location and momentum are both determined in a classical description. While |⟨(y)k|φn⟩|2
provides the likelihood that the state described by φn will be jointly perceived near (y)k, (y)k
does not describe a state with an evident classical interpretation: there is no indication of a mo-
mentum and k is not necessarily equal to n since (y)k is relativistic when sufficiently localized.
Similarly, there is no indication of location in the likelihoods |⟨(q)k|φ̃n⟩|2. Nevertheless, before a
plane wave limit, likelihoods |⟨(q)k|φ̃n⟩|2 are useful in scattering instances since asymptotically
the supports of the state describing functions are sufficiently spatially separated that cluster
decomposition A.6 provides that localization (113) and isolation (116) apply to associate φn
with corresponding classical particles. This correspondence in scattering does not apply for
brief intervals λ. In the plane wave limit, the φ̃n become eigenfunctions of the Hamiltonian
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(93), and like in Schrödinger’s analysis of the linear harmonic oscillator, are not appropriate
state describing functions for a quantum-classical correspondence.

4.3 A nonrelativistic quantum-classical correspondence

Evident in the scattering amplitudes, including (101) and [30, 32, 34], the VEV constructed
in section 3.4 exhibit interaction. Interaction is also manifest in the relativistically invariant,
finite interval transition amplitudes. In this section, a nonrelativistic correspondence of classical
particle trajectories with the time evolution of state describing functions is developed.

Our perceptions of “macroscopic” quantum state descriptions satisfy classical dynamics.
The quantum-classical correspondence introduced in sections 2 and 4.2 associates isolated vol-
umes of support of the state describing functions φn(λ) with the classical dynamical variables,
location and momenta. These classical dynamical variables follow Newtonian dynamics in non-
relativistic instances (120). More generally, with consideration limited to observation of features
associated with classical bodies, if we calculate that the bodies move guided by classical fields
A(x)κ with sources on the bodies (e.g., the Lorentz force and Maxwell’s equations in electro-
dynamics, or geometrodynamical gravity) and this classical dynamics produces an accurate
approximation to the quantum dynamics when the supports of state describing functions are
well-represented by classical bodies, then we would say that the quantum model corresponds
with the classical field theory. This correspondence is valid regardless of whether there is a
“quantization” of the classical fields. A correspondence of classical field theory with quantum
dynamics is established by the approximation of the motions of observed bodies.

In this revised quantum-classical correspondence, time evolution of the state describing
function is represented by the evolution of classical dynamical variables. A correspondence of
classical particle trajectories uj(λ) with the evolution of a state describing function is realized
if

|U(−λ)φ̂n(0)⟩ ≈ eiϕI(λ)|φ̂n(λ)⟩ (123)

for times λ > 0. The quantum mechanical evolution of states is a unitary mapping U(−λ)
(33) of the state describing functions φ̂n(0). For state describing functions (121), the Fourier
transform of the quantum evolution is

U(−λ)φ̃n(0) =
n∏
j=1

eiωjλeipj ·uj(0)(pj0 + ωj)f̃n((p−w(0))n; 0)

with the substitution (94) for the time translation operator. The correspondence (123) asserts
that the nonrelativistic evolution of the support of φn(0) is perceived to follow trajectories
uj(λ) that satisfy Newtonian dynamics,

φ̃n(λ) =

n∏
j=1

eipj ·uj(λ)(pj0 + ωj)f̃n((p−w(λ))n;λ)
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with u̇(λ) = λcw(λ). A quantum-classical correspondence is justified for appropriate state
describing functions, those with spatial and momentum support that is well-represented by
one location (113) and one momentum (115), and that is identifiable due to isolation (116).
Newtonian mechanics applies if the support is also nonrelativistic (120). Time is advanced in
the state describing function to match the advancement of time in the description of trajectories:

U(−λ)φn((0,x)n; 0) = φn((λ,x)n; 0)

from (33). From Born’s rule, the squared magnitude of the scalar product

|⟨U(−λ)φ̂n(0)⟩|φ̂n(λ)⟩|2

is the likelihood that the state described by U(−λ)φ̂n(0) is perceived as the state described by
φ̂n(λ). The phase ϕI(λ) in the correspondence (123) is a purely quantum mechanical consider-
ation following from the descriptions of states as rays in a complex Hilbert space. Justified by
Poincaré invariance of the scalar product (30), the reference time is taken as zero without loss
of generality. In (123), the state describing functions are normalized in the Hilbert space norm
(21),

φ̂n(λ) :=
φn(λ)

∥φn(λ)∥
. (124)

The trajectories uj(λ) that are most likely to be observed optimize the correspondence
(123). Conversely, given a trajectory uj(λ), (123) defines a matching distorted function,

φn(λ) := e−iϕI(λ)U(−λ)φ̂n(0)⟩, (125)

whether there is a quantum-classical correspondence or not. These distorted functions (125)
are not of interest to identify the corresponding trajectories. The solution of interest to (123)
identifies trajectories determined by the quantum dynamics. The most classical particle-like
state describing functions φn(0) are selected to identify corresponding uj(λ). The most classical
particle-like state describing functions are Gaussians and the evolutions of Gaussians remain
Gaussian with complex spreading parameters as long as nonrelativistic approximations apply.
Gaussian functions initially exhibit the strongest quantum-classical correspondence: for real
spreading parameters, the Heisenberg lower bound on location and momentum support spreads
is met. With inclusion of the phase ϕI(λ) and free particle-like spreading of the support of
Gaussian state describing functions, the unitary evolution of the most classical particle-like
state describing function φn(0) determines corresponding classical dynamical variables uj(λ)
and wj(λ). However, the motion of the center-of-momentum is free, and consequently irrelevant
to determination of relative trajectories. Interaction is exhibited in the relative motions of the
corresponding classical particles.

The approximate equality of two state describing functions (123) is established in the Hilbert
space norm (21). The phase ϕI(λ) is determined to minimize the error in the approximation
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(123).

0 ≈
∥∥U(−λ)φ̂n(0)− eiϕI(λ)φ̂n(λ)

∥∥2
= 2− 2ℜe

(
eiϕI(λ)⟨U(−λ)φ̂n(0)|φ̂n(λ)⟩

)
.

The error is minimized by maximization of the real component of the product of the phase
factor and the indicated scalar product. Polar decomposition determines the phase ϕI(λ) that
maximizes ℜe

(
eiϕI(λ)⟨U(−λ)φ̂n(0)|φ̂n(λ)⟩

)
.

⟨U(−λ)φn(0)|φn(λ)⟩ = |⟨U(−λ)φn(0)|φn(λ)⟩| e−iϕI(λ) (126)

The phase is an additive and homogeneous function over time.

ϕI(a+ b) = ϕI(a) + ϕI(b)
ϕI(0) = 0.

The Cauchy-Schwarz-Bunyakovsky inequality provides that

|⟨U(−λ)φ̂n(0)|φ̂n(λ)⟩| ≤ 1 (127)

with the normalization (124).
It is convenient to designate a scalar product of normalized state describing functions

I(λ) :=
⟨U(−λ)φn(0)|φn(λ)⟩
∥φn(0)∥ ∥φn(λ)∥

(128)

and from Poincaré invariance of the scalar product,

∥U(−λ)φn(0)∥ = ∥φn(0)∥.

From the selection of phase (126),

|I(λ)| = eiϕI(λ)I(λ).

This scalar product (128) is a function of the time interval λ, and unknown trajectories uj(λ)
and momenta wj(λ). uj(0), u̇j(0) are considered initial conditions for the corresponding clas-
sical trajectories. The phase factor eiϕI(λ) in (123) does not contribute to likelihood |I(λ)|2:
zz = |z|2.

The condition (123) establishes a quantum-classical correspondence if three considerations
are satisfied:

C.1) the likelihood |I(λ)|2 is near unity

C.2) the dominant supports of the evolved functions (122) remain well-represented by one loca-
tion (113) and one momentum (115), identifiable due to isolation (116), and nonrelativistic
(120)
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C.3) the corresponding trajectories uj(λ) satisfy classical dynamics.

The state describing functions φ̃n(λ) (122) are composite functions over 6n functions uj(λ)
and wj(λ). The center-of-momentum of the n interacting classical particles representative
of φn(λ) evolves as a single free body independently of the relative motion of the bodies.
Independence applies in nonrelativistic approximation (120). Poincaré invariance (30) of the
scalar product (22) and covariance (31) of state descriptions φn(λ) provide that a Poincaré
transformation equates any scalar product to the scalar product in a center-of-momentum
reference frame determined by the n trajectories uj(λ) with momenta wj(λ). In nonrelativistic
approximation u̇j(λ) = λcwj(λ). In this center-of-momentum frame and for nonrelativistic
momenta,

n∑
j=1

mκjuj(λ) = 0, and

n∑
j=1

mκjwj(λ) = 0.

Transformation to this frame is a boost described in appendix 7.11, and a translation to collocate
the center-of-mass ∑n

j=1mκjuj(λ)∑n
j=1mκj

with the origin of coordinates. As a consequence, only n − 1 of the uj(λ) and wj(λ) are
independent variables determining I(λ).

Continuous differentiability of |I(λ)|2 suffices to satisfy C.1 for sufficiently brief intervals λ.
A Taylor theorem polynomial approximates the likelihood.

|I(λ)|2 = |I(0)|2 + λ
d|I(0)|2

dλ
+

1

2
λ2
d2|I(0)|2

dλ2
+ . . . (129)

and from the Cauchy-Schwarz-Bunyakovsky inequality (127), λ = 0 is recognized as a maxima.
Then

d|I(0)|2

dλ
= 0.

From (128), |I(0)|2 = 1 and for sufficiently brief λ,

|I(λ)|2 ≈ 1− 1

2
λ2
∣∣∣∣d2|I(0)|2dλ2

∣∣∣∣ . (130)

A selection of trajectories that minimize the first temporal derivative of |I(λ)|2,

d|I(λ)|2

dλ
≈ 0, (131)

provides that |I(λ)| ≈ |I(0)| = 1.
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For the most likely trajectory, satisfaction of the quantum-classical correspondence (123) is
not improved by any modification to the trajectory. For the optimal trajectory,

∂|I(λ)|2

∂uj(λ)
= 0

∂|I(λ)|2

∂u̇j(λ)
= 0

(132)

individually for each component of the uj(λ) and u̇j(λ) = λcwj(λ). Here, partial derivatives
with respect to a spatial vector designates a gradient vector

∂F

∂uj
:=

∂F

∂ujx
,
∂F

∂ujy
,
∂F

∂ujz
.

Chain rule expansion of the derivative of |I(λ)|2 includes partial derivatives with respect to the
n− 1 independent uj(λ), u̇j(λ).

d|I(λ)|2

dλ
=

n−1∑
j−1

∂|I(λ)|2

∂uj(λ)
· u̇j(λ) +

n−1∑
j−1

∂|I(λ)|2

∂u̇j(λ)
· üj(λ) +

∂|I(λ)|2

∂λ
(133)

with the uj(λ) and u̇j(λ) held constant in the evaluation of

∂|I(λ)|2

∂λ
.

Finally, if the optimality condition (132) is satisfied, then the φn(λ) that minimize the loss of
likelihood (176) with increasing λ also solve

∂|I(λ)|2

∂λ
≈ 0. (134)

The product rule and |I(λ)| ≈ 1 for brief λ provide that (134) is satisfied if and only if

∂|I(λ)|
∂λ

= 0.

Sesquilinearity of the scalar product (22) and U(−λ) = eiHλ (94) provide that the derivative of
|I(λ)| evaluated at λ = 0 is

0 =
∂|I(λ)|
∂λ

=
∂

∂λ

⟨eiHλφ̂n(0)|eiϕI(λ)φn(λ)⟩
∥φn(0)∥ ∥φn(λ)∥

= −i⟨Hφn(0)|φn(0)⟩
∥φn(0)∥2

+ i
∂ϕI(λ)

∂λ
+
∂

∂λ

⟨φn(0)|φn(λ)⟩
∥φn(0)∥ ∥φn(λ)∥

.

(135)
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H is the Hamiltonian (94) in the n-argument subspace. The first term in the final line of (135)
is the expectation of the energy of φn(0), and (135) relates this energy to the derivative of
the phase ϕI(λ) with a third correcting term. At λ = 0, (135) is satisfied for the most likely
trajectories uj(λ).

Extrapolation of the quantum-classical correspondence (123) from brief to more extended
intervals is discussed in section 4.5.

Representations of the evolution of the state describing function by a single classical trajec-
tory per body (123) deteriorate with increased propagation intervals. Considering the classical
correspondence for each classical body, nearby initial conditions produce trajectories that di-
verge with time. With sufficient divergence of corresponding trajectories, association of the
support of a state describing function with a classical body, satisfaction of C.2, is lost over
time. Another perspective on the limited duration of the quantum-classical correspondence
(123) is suggested by the Riemann-Lebesgue lemma [47]. The likelihood

|⟨U(−λ)φn(0)|eiϕI(λ)φn(λ)⟩|2

will asymptotically converge to zero for λ→∞ unless the phases exp(iωkλ) from the Hamilto-
nian (93) are compensated by the state describing function φn(λ). The phase ϕI(λ) does not
suffice to compensate exp(iωkλ) since ϕI(λ) does not vary with momenta (p)n. An uncompen-
sated phase proportional to λ leads to an asymptotically vanishing scalar product.

Persistent classical correspondences such as observations of planetary motions over great
periods typically include recurring localizing observations. The relevant descriptions of state
undergo recurring localization from interactions that are effectively observations. Localizing
observations are the result of scatter and emission of radiation, and perturbations of the mo-
tion of additional bodies. Given approximations for the trajectories, distorted functions φn(λ)
centered on those trajectories follow (125). Inclusion of these effects on observed classical
correspondences is an additional insight requiring further development.

4.4 Two body correspondence

This section is a substantial digression to evaluate the quantum-classical correspondence (123)
for two-argument state describing functions. For two-argument state describing functions, the
nonrelativistic correspondence is with two classical bodies. The two classical bodies are de-
scribed by a freely evolving center-of-momentum and one independent trajectory u1(λ). Non-
relativistic, brief interval, limited acceleration approximations for the scalar products (123) and
first derivatives are evaluated. For two corresponding classical bodies, classical trajectories are
available, for example, appendix 7.12. This example uses the VEV for a single neutral scalar
field and appropriate state describing functions (122) from HP .

A quantum-classical correspondences satisfies C.1-3 in section 4.3. For two-argument state
describing functions, satisfaction of the quantum-classical correspondence (123) maximizes the
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likelihood

|I(λ)|2 = |⟨eiHλφ2(0)|φ2(λ)⟩|2

⟨φ2(0)|φ2(0)⟩⟨φ2(λ)|φ2(λ)⟩
(136)

and satisfies the energy relation (135). Following the development of the state describing
functions with classical correspondences (121) in section 4.2, appropriate two-argument state
describing functions

φ2(x1, x2;λ)

have Fourier transforms

φ̃2(p1, p2;λ) :=

2∏
j=1

eipj ·uj(λ)(pj0 + ωj) f̃2(p1−w1(λ),p2−w2(λ);λ). (137)

Poincaré invariance is exploited to express scalar products in the center-of-momentum coordi-
nate frame determined by the corresponding classical locations uj(λ) and momenta wj(λ). In
the resulting center-of-momentum coordinate frame with the center-of-mass colocated with the
origin,

u2(λ) = −u1(λ)

and w2(λ) = −w1(λ). For nonrelativistic (120) momenta, λcwj(λ) ≈ u̇j(λ). In this reference
frame, an abbreviated notation,

u(λ) := u1(λ), (138)

is substituted. Similarly, w(λ) := w1(λ).

4.4.1 Nonrelativistic approximation

In this section, example state describing and VEV functions are selected, and nonrelativistic
approximations for the scalar products of the state describing functions U(−λ)φ2(0) and φ2(λ)
are developed as quadratures. These quadratures evaluate the scalar products and their deriva-
tives. In the nonrelativistic approximation and for the selected state describing functions, it is
demonstrated that the description of the center-of-momentum motion factors from the relative
motion of the two corresponding classical particles in the scalar products: length contraction
and time dilation are negligible.

The form for f̃2 in (137) is selected to remove consideration of the motion of the center-
of-momentum from evaluation of the likelihoods |I(λ)|2. With the selected form and in the
evaluation of scalar products of interest, description of the motion of the center-of-momentum
is factored from description of the relative motion of the two bodies. The selected f̃2 separates
in Jacobi coordinates.

f̃2(p1−w(λ),p2+w(λ);λ) := f̃M (p1 + p2;λ)f̃I(p1 − p2 − 2w(λ);λ). (139)
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fM describes the center-of-momentum, and fI describes the relative motion of two correspond-
ing classical bodies designated 1 and 2. Reliable identification of classical bodies with arguments
requires isolation (116). (139) is expressed in the center-of-momentum reference frame with the
abbreviated notation (138). The supports of f̃M (p;λ) and f̃I(p;λ) are centered on the origins
in both the spatial and momentum domains. Jacobi coordinates are

p′
1 := p1 + p2 and p′

2 := p1 − p2 (140)

and then

p1 =
p′
1 + p′

2

2
and p2 =

p′
1 − p′

2

2
.

With similar substitutions for p3,p4, the determinant of the Jacobian matrix for the coordinate
transformation (p)4 7→ (p′)4 is

(
1
4

)3
for the four variables in three-dimensional space.

Conservation of momentum separates in the Jacobi coordinates.

δ(p1 + p2 + p3 + p4) = δ(p′
1 + p′

3)

does not include the p′
2,p

′
4 dependence that describes the internal motion. Factors of ωj +

pj0 after evaluation of mass shell delta functions in the state describing functions become
approximately constant in nonrelativistic approximation, ωj ≈ λ−1

c if λ2cp
2
j ≪ 1. The remaining

separability considerations are the factorability of the momentum dependence in the unitary
time translation U(−λ) and the energy conservation delta function.

A separation of variables in the time translation (94) follows from nonrelativistic approxi-
mation (120) for the Hamiltonian (93). Factors of ωj +pj0 commute with the Hamiltonian (93)
and then the time evolution of the state describing function is

U(−λ)f̃2((p−w(λ))2; 0) = ei(ω1+ω2)λ f̃M (p1 + p2; 0)f̃I(p1 − p2 − 2w(0); 0).

The Hamiltonian in the two-argument subspace is ω1+ω2. Taylor theorem polynomial approx-
imation results in

ω1 + ω2 = ω(
p′
1+p′

2
2 ) + ω(

p′
1−p′

2
2 )

≈ 2ω(12p
′
2) +

p′2
1

4ω(12p
′
2)

≈ 2ω(12p
′
2) +

1
4λcp

′2
1

from (8) and with the nonrelativistic approximation (266) from appendix 7.13. λ2cp
′
1
2 ≪ 1.

Then, for the state describing function (137) in nonrelativistic instances, time translation factors
in Jacobi coordinates,

U(−λ)f̃2((p−w(λ))2; 0) ≈
(
ei

1
4
λcp′2

1 λf̃M (p′
1; 0)

)(
e2iω(

p′
2
2
)λf̃I(p

′
2 − 2w(0); 0)

)
. (141)
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Nonrelativistic approximation of the Hamiltonian limits the duration of the interval λ that
a nonrelativistic approximation of time translation applies. For negligible error,(

ω1 + ω2 − 2ω(
1

2
p′
2)−

1

4
λcp

′2
1

)
λ≪ π.

Indeed, the nonrelativistic approximations to ωj are polynomials in pj and are qualitatively

distinct from the Hamiltonian.
√
λ−2
c −∆ is an anti-local operator [52] while powers of the

Laplacian ∆ are local.
Separation of variables in the energy conservation delta function also follows from nonrela-

tivistic approximation, (267) in appendix 7.13.

ω1 + ω2 − ω3 − ω4 ≈ 2ω(
1

2
p′
2)− 2ω(

1

2
p′
4).

Conservation of momentum provides that p′
1 = p′

3 and then only the momenta in the description
of the internal motion appear in the energy conservation delta function.

With time evolution applied to define the deformed center-of-mass state describing function,

f̃M (p;λ) := ei
1
4
λcp2λf̃M (p; 0), (142)

nonrelativistic approximation of the Hamiltonians (141) and (142) provide that the state de-
scribing functions include a common factor.

f̃2((p−w(λ))2;λ) ≈ f̃M (p′
1;λ) f̃I(p

′
2 − 2w(λ);λ)

U(−λ)f̃2((p−w(λ))2; 0) ≈ f̃M (p′
1;λ) e

2iω(
p′
2
2
)λf̃I(p

′
2 − 2w(0); 0)

(143)

provide the nonrelativistic descriptions of the two state describing functions in the likelihood
(136).

Cluster expansion (62) with (66) for the VEV of a single neutral scalar field provides that
the VEV in the scalar product for the two-argument function subspace are

W̃2,2((p)4) = Ũ2,2(((p)4) + W̃2(p1, p3)W̃2(p2, p4) + W̃2(p1, p4)W̃2(p2, p3) (144)

with connected functions

W̃2((p)2) = 2
√
ω1ω2 δ(p1 + p2)

2∏
j=1

δ(p2j − λ−2
c )

Ũ2,2((p)4) = c4 δ(p1 + p2 + p3 + p4)

4∏
j=1

δ(p2j − λ−2
c )

from (38) and (55).
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The frequency domain representation (108) of the scalar product with state describing
functions (137) and the VEV (144) is

⟨φ2(λ
′)|φ2(λ)⟩ ≈

∫
d(p)4 e

−i(p1−p2)·u(λ′)f̃2((p−w(λ′))2;λ′)

×ei(p3−p4)·u(λ)f̃2((p−w(λ))3,4;λ)

×
{

4

λ2c
δ(p1−p3)δ(p2−p4) + c4δ(ω1+ω2−ω3−ω4)δ(p1+p2−p3−p4)

}
≈
(
1
4

)3 ∫
d(p′)4 e

−ip′
2·u(λ′)f̃2((p−w(λ′))2;λ′) eip

′
4·u(λ)f̃2((p−w(λ))3,4;λ)

×
{
32

λ2c
δ(p′

2−p′
4) + c4δ(2ω(

p′
2
2 )−2ω(p

′
4
2 ))

}
δ(p′

1−p′
3)

(145)

with the change to Jacobi coordinates (140) and in nonrelativistic approximation. The

δ(p1−p4)δ(p2−p3)

“cross” term from the free field contribution to the VEV is negligible for state describing
functions with a reliable quantum-classical correspondence. State describing functions that have
a reliable quantum-classical correspondence satisfy isolation (116). The Pauli-Jordan two-point
function has an exponential spatial decline in space-like directions characterized by ∥u(λ)∥/λc
and if separations ∥u(λ)∥ are large compared to λc, the contribution of δ(p1−p4)δ(p2−p3) is
negligible. From δ(f(x)) = δ(x − xo)/|f ′(xo)| if f(x) has a single zero at xo [19], and in three
dimensions,

δ(p1−p3)δ(p2−p4) = δ(12(p
′
1+p′

2−p′
3−p′

4))δ(
1
2(p

′
1−p′

2−p′
3+p′

4))

= 23δ(p′
1+p′

2−p′
3−p′

4)δ(
1
2((p

′
3+p′

4−p′
2)−p′

2−p′
3+p′

4))

= 8δ(p′
1+p′

2−p′
3−p′

4)δ(p
′
2−p′

4)

= 8δ(p′
1 −p′

3)δ(p
′
2−p′

4)

and

δ(p1−p4)δ(p2−p3) = δ(12(p
′
1+p′

2−p′
3+p′

4))δ(
1
2(p

′
1−p′

2−p′
3−p′

4))

= 23δ(p′
1+p′

2−p′
3+p′

4)δ(
1
2((p

′
3−p′

4−p′
2)−p′

2−p′
3−p′

4))

= 8δ(p′
1+p′

2−p′
3+p′

4)δ(p
′
2+p′

4)

= 8δ(p′
1 −p′

3)δ(p
′
2+p′

4).
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Three scalar products contribute to |I(λ)|2 in (136). Designate the generalized function in
the scalar product (145) as

T4(p
′
2,p

′
4) :=

1

λ2c
δ(p′

2−p′
4) +

c4
32
δ(2ω(

p′
2
2 )−2ω(p

′
4
2 ))

=
1

λ2c
δ(p′

2−p′
4) +

c4
8λc

δ(p′2
2 − p′2

4 )
(146)

after the substitution

δ(2ω(
p′
2

2
)− 2ω(

p′
4

2
)) = 4ω(

p′
2

2
)δ(p′2

2 − p′2
4 )

with the nonrelativistic approximation ω(
p′
2
2 ) ≈ λ−1

c . Then, substitution of the state description
(143) and VEV (146) into the scalar product (145) results in

⟨U(−λ)φ2(0)|φ2(λ)⟩ ≈ 1
2

∫
dp |f̃M (p;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e−2iω(
p′
2
2
)λe−ip′

2·u(0)eip
′
4·u(λ) f̃I(p′

2 − 2w(0); 0) f̃I(p
′
4 − 2w(λ);λ)

denoted the mixed scalar product and

⟨φ2(λ)|φ2(λ)⟩ ≈ 1
2

∫
dp |f̃M (p;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e−ip′
2·u(λ)eip

′
4·u(λ) f̃I(p′

2 − 2w(λ);λ) f̃I(p
′
4 − 2w(λ);λ)

provides the square of both norms, ∥φ2(0)∥ and ∥φ2(λ)∥. Due to the unimodular phase in
(142), the summation ∫

dp |f̃M (p;λ)|2 =
∫
dp |f̃M (p; 0)|2

does not vary with time λ and becomes a common factor of the three scalar products of interest.
Designate the common factor in the three scalar products composing the likelihood (136)

ag :=
1

2

∫
dp |f̃M (p;λ)|2. (147)

Common factors do not contribute to the likelihood (136). Also, since likelihood depends only
on the magnitude of the mixed scalar product, unimodular factors eiϕI(λ) do not contribute.

Time translations of a Gaussian f̃I remains “in family” with nonrelativistic approximation.

A Taylor theorem polynomial expansion for 2ω(
p′
2
2 ) is

2ω(
p′
2

2
) ≈ 2ω(w(λ)) +

w(λ) · (p′
2 − 2w(λ))

ω(w(λ))
+

(p′
2 − 2w(λ))2

4ω(w(λ))
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from (266) in appendix 7.13. Expansion is about the representative momentum 2w(λ) in the
support over p′

2. The support of the description of the relative motion is nonrelativistic if

∥p′
2 − 2w(λ)∥ ≪ λ−1

c ≤ ω(w(λ))

within the dominant support of f̃I and the corresponding classical trajectory is nonrelativistic
if ∥w(λ)∥ ≪ λ−1

c . Then, for nonrelativistic momenta, the Hamiltonian that describes the
evolution of the relative motion is

2ω(
p′
2
2 ) ≈ 2λ−1

c + λcw(λ)2 + λcw(λ) · (p′
2 − 2w(λ)) +

λc
4
(p′

2 − 2w(λ))2

= 2λ−1
c +

λc
4
p′2
2

(148)

to second order in small quantities λc∥p′
2 − 2w(λ)∥ ≪ 1 and λc∥w(λ)∥ ≪ 1.

With nonrelativistic approximation for the Hamiltonian, time translations of a Gaussian
relative motion describing function remain Gaussian. Selection of a Gaussian to describe the
relative motion of the two bodies,

f̃I(p;λ) := e−2iu(λ)·w(λ) exp(−L(λ)2p2), (149)

is spherically symmetric. Appropriate selections of u(λ) and w(λ) satisfy isolation (116) and
are nonrelativistic (120). L(λ) is a complex length characterizing the breadth of the spatial
support. In (149),

Re(L(λ)2) > 0.

Real L(0)2 are the most classical particle-like state describing functions, meeting the Heisenberg
uncertainty lower bound for simultaneous knowledge of location and momentum. Complex
L(λ)2 exceed the lower uncertainty bound with additional spreading in location for a constant
spread in momentum. The translated functions

eip·u(λ) f̃I(p− 2w(λ);λ) = exp
(
−L(λ)2(p−2w(λ))2 + i(p−2w(λ))·u(λ)

)
have inverse Fourier transforms(

1

2L(λ)2

) 3
2

exp

(
−(x− u(λ))2

4L(λ)2
− 2iw(λ)·x

)
.

To satisfy a nonrelativistic quantum-classical correspondence, the support spread parameter
L(λ)2 is constrained by both upper and lower bounds introduced in section 4.2. An upper
bound

|L(λ)|4

Re(L(λ)2)
≪ u(λ)2
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limits spatial extent to isolate (116) the support of the two corresponding classical particles. A
lower bound suppresses support on relativistic momenta (120),

Re(L0(λ)
2)≫ λ2c . (150)

The bounds preclude both plane wave and point-like limits.
Substitution of the Gaussian relative motion describing function (149) into the scalar prod-

uct results in

⟨U(λ)φ2(0)|φ2(λ)⟩ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e−2iω(
p′
2
2
)λe−i(p′

2−2w(0))·u(0)ei(p
′
4−2w(λ))·u(λ)e−L(0)2(p′

2−2w(0))2 e−L(λ)2(p′
4−2w(λ))2

(151)

for the mixed scalar product and

⟨φ2(λ)|φ2(λ)⟩ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e−i(p′
2−p′

4)·u(λ)e−L(λ)2(p′
2−2w(λ))2 e−L(λ)2(p′

4−2w(λ))2
(152)

for the squared norms.
With Re(L(λ)2) > 0 and u(λ),w(λ) ∈ R, after evaluation of the delta functions, the rapid

decline of Gaussian functions ensures convergence of the scalar products (151) and (152). From
the dominated convergence theorem, derivatives of the scalar products are summations of the
derivatives of state describing functions. With the designations

Sm := ⟨U(λ)φn(0)|φn(λ)⟩
S0 := ⟨φn(0)|φn(0)⟩
Sλ := ⟨φn(λ)|φn(λ)⟩,

(153)

the derivatives of the scalar products with respect to the components of u(λ) are

∂Sm
∂u(λ)

≈ iag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) (p

′
4 − 2w(λ))

×e−2iω(
p′
2
2
)λe−i(p′

2−2w(0))·u(0)ei(p
′
4−2w(λ))·u(λ) e−L(0)2(p′

2−2w(0))2 e−L(λ)2(p′
4−2w(λ))2

(154)

for the mixed scalar product and

∂Sλ
∂u(λ)

≈ −iag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) (p

′
2 − p′

4)

×e−i(p′
2−p′

4)·u(λ)e−L(λ)2(p′
2−2w(λ))2 e−L(λ)2(p′

4−2w(λ))2
(155)

for the λ > 0 squared norms. The λ = 0 squared norms are independent of u(λ), u̇(λ) and λ.
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Similarly, the partial derivatives of the scalar products with respect to the components of
u̇(λ) = λcw(λ) in the nonrelativistic approximation (120) are

∂Sm
∂u̇(λ)

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)
(
−2iλ−1

c u(λ) + 4λ−1
c L(λ)2(p′

4 − 2w(λ))
)

×e−i(p′
2−2w(0))·u(0) e−L(0)2(p′

2−2w(0))2 e−L(λ)2(p′
4−2w(λ))2 e−2iω(

p′
2
2
)λei(p

′
4−2w(λ))·u(λ)

(156)
for the mixed scalar product and

∂Sλ
∂u̇(λ)

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) 4λ

−1
c

(
L(λ)2(p′

2−2w(λ)) + L(λ)2(p′
4−2w(λ))

)
×e−i(p′

2−p′
4)·u(λ)e−L(λ)2(p′

2−2w(λ))2 e−L(λ)2(p′
4−2w(λ))2

(157)

for the λ > 0 squared norms.
Finally, the partial derivatives of the scalar products with respect to λ with u(λ) and u̇(λ)

held constant are

∂Sm
∂λ
≈ ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

(
−2iω(p

′
2
2 )− dL(λ)2

dλ
(p′

4 − 2w(λ))2
)

×e−i(p′
2−2w(0))·u(0)ei(p

′
4−2w(λ))·u(λ) e−L(0)2(p′

2−2w(0))2e−2iω(
p′
2
2
)λ e−L(λ)2(p′

4−2w(λ))2
(158)

for the mixed scalar product and

∂Sλ
∂λ
≈ ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

(
−dL(λ)

2

dλ
((p′

2−2w(λ))2− dL(λ)
2

dλ
(p′

4−2w(λ))2)

)
×e−i(p′

2−p′
4)·u(λ)e−L(λ)2(p′

2−2w(λ))2 e−L(λ)2(p′
4−2w(λ))2

(159)

for the λ > 0 squared norms. In nonrelativistic approximation, ω(
p′
2
2 ) ≈ λ−1

c .

4.4.2 Brief interval and limited acceleration approximations

If the duration of the interval λ in the correspondence (123) is sufficiently limited that linear
approximations of the classical dynamics suffice, then simplified approximations of the scalar
products and their first derivatives (151)-(159) follow. This constraint is in addition to the
limitation on λ to apply nonrelativistic approximation of the time translation. In this section,
nonrelativistic, brief interval λ, limited acceleration approximate relationships between the
state describing functions U(λ)φ2(0) and φ2(λ) are developed. With these approximations, the
phase ϕI(λ) from the quantum-classical correspondence condition (123) and the support spread
parameter L(λ)2 in the description of the relative motion (149) are determined.
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If the quantum-classical correspondence is examined for sufficiently brief intervals λ > 0,
then Taylor theorem polynomial approximation to first order in λ suffices.

u(λ) ≈ u(0) + λu̇(0)

w(λ) ≈ w(0) + λẇ(0)
(160)

and for nonrelativistic momenta, λcw(λ) ≈ u̇(λ). The two Gaussian functions (149) that
provide the classical and quantum descriptions (123) of the relative motion are simply related
to O(λ2) for nonrelativistic momenta (120). The classical description of the evolution of the
support eiϕI(λ)φ2(λ) equals

eiϕI(λ)eip·u(λ)f̃I(p− 2w(λ);λ) = eiϕI(λ)ei(p−2w(λ))·u(λ)e−L(λ)2(p−2w(λ))2

≈ e2iω(
p
2
)λ ei(p−2w(0))·u(0)e−L(0)2(p−2w(0))2 e4L(0)

2(p−2w(0))·ẇ(0)λ

= e4L(0)
2(p−2w(0))·ẇ(0)λ e2iω(

p
2
)λ eip·u(0)f̃I(p− 2w(0); 0)

(161)

a factor times the quantum mechanical description of the internal motion U(−λ)φ2(0). The
relationship (161) includes an envelope evolution correction factor

e4L(0)
2(p−2w(0))·ẇ(0)λ.

The demonstration of (161) follows from the linear approximation (160) of the classical
dynamics and nonrelativistic approximation (148) of the Hamiltonian. Linear expansion (160)
and neglecting O(λ2) contributions,

(p−2w(λ)) · u(λ) = (p−2w(0)−2λẇ(0)) · (u(0) + λu̇(0))

≈ (p−2w(0)) · u(0) + λ(p−2w(0)) · u̇(0)− 2λẇ(0) · u(0).

The linear expansion (160) and setting

L(λ)2 = L(0)2 − iλc
4
λ (162)

results in an expansion for the Gaussian function in the first line of (161). Neglecting O(λ2),

L(λ)2(p−2w(λ))2 = (L(0)2 − iλc
4
λ) (p−2w(0)−2λẇ(0))2

≈ L(0)2(p−2w(0))2 − 4λL(0)2(p−2w(0)) · ẇ(0)− iλc
4
λ(p−2w(0))2.

This L(λ)2 describes the support spread from nonrelativistic free propagation of a Gaussian
function [24] in Jacobi coordinates (140).
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The Taylor polynomial approximation (148) of the Hamiltonian with the momentum p
centered on 2w(λ) is

2ω(
p

2
) ≈ 2λ−1

c + λcw(λ)2 + λcw(λ) · (p− 2w(λ)) +
λc
4
(p− 2w(λ))2.

Substitution of the expansions into the phase in the first line of (161) with subtraction of
the phase contributed by time translation results in

iϕI(λ) + i(p−2w(λ)) · u(λ)− L(λ)2(p−2w(λ))2 − 2iω(p2 )λ

≈ iϕI(λ) + i(p−2w(0)) · u(0) + iλ(p−2w(0)) · u̇(0)− 2iλẇ(0) · u(0))

−L(0)2(p−2w(0))2 + 4λL(0)2(p−2w(0)) · ẇ(0) + i
λc
4
λ(p−2w(0))2

−iλ
(
2λ−1

c + λcw(λ)2 + λcw(λ) · (p− 2w(λ)) +
λc
4
(p− 2w(λ))2

)
.

Substitution of λw(λ) = λw(0) to O(λ2) and the nonrelativistic approximation λcw(λ) = u̇(λ),
and collecting equal terms results in

≈ iϕI(λ) + i(p−2w(0)) · u(0)− 2iλλ−1
c ü(0) · u(0))

−L(0)2(p−2w(0))2 + 4λL(0)2(p−2w(0)) · ẇ(0)

−iλ
(
2λ−1

c + λ−1
c u̇(λ)2

)
.

Identification of the phase ϕI(λ),

ϕI(λ) = (2 + u̇(0)2 + 2ü(0) · u(0)) λ
λc
, (163)

provides the demonstration of (161).

iϕI(λ) + i(p−2w(λ)) · u(λ)− L(λ)2(p−2w(λ))2 − 2iω(p2 )λ

≈ i(p−2w(0)) · u(0)− L(0)2(p−2w(0))2 + 4λL(0)2(p−2w(0)) · ẇ(0).

Identification of the support spread parameter (162) and phase (163) demonstrate the quantum-
classical correspondence (123) over brief intervals λ.

The phase (163) corresponds to the classical energy of two nonrelativistic particles.

2mc2 +K.E. + V = mc2 (2 + u̇(0)2 + 2ü(0) · u(0)).

λcmc
2 = ℏc. The rest mass energy is 2, the kinetic energy of the two particles is u̇(0)2, and the

pair potential V is identified in more familiar form in section 4.4.5 below. If the trajectories
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satisfy Newton’s equation of motion, this energy is independent of λ and 2ü(0) ·u(0)) is a −g/r
pair potential.

Neglecting terms of O(λ2) in the brief interval expansion, the envelope evolution correction
factor does not vary with time.

e−4λL(0)2(p−2w(0))·ẇ(0) = e−4λL(λ)2(p−2w(λ))·ẇ(λ). (164)

An acceleration limitation is convenient to analyze the quantum-classical correspondence
(123) by justifying neglect of the envelope evolution correction factor. The envelope evolution
correction in the approximation (161) is negligible either with an acceleration limit, or after
application of descriptive momentum (115). From the Cauchy-Schwarz-Bunyakovsky inequality,

|(p−2w(0)) · ẇ(0)| ≤ ∥p−2w(0)∥ ∥ẇ(0)∥.

If the initial acceleration in the brief interval approximation is limited,

∥ẇ(0)∥ ≤ ϵ

u(0)2
, (165)

then
|(p−2w(0)) · ẇ(0)| ≤ ∥p−2w(0)∥ ϵ

u(0)2

and the envelope evolution correction factor e4L(0)
2(p−2w(0))·ẇ(0)λ is negligible compared to the

envelope,

4Re(L(0)2)∥p−2w(0)∥ ϵ

u(0)2
λ≪ Re(L(0)2)(p−2w(0))2,

as long as
4ϵλ

u(0)2
≪ ∥p−2w(0)∥.

The support of the summation evaluating a scalar product includes p ≈ 2w(0) but the enve-
lope evolution correction is small in the neighborhood of these points. To approximate scalar
products, the bound need only apply for p where the envelope deviates significantly from unity,
p that satisfy √

Re(L(0)2) ∥p−2w(0)∥ ≥ ϵ.

An accurate approximation for the scalar product results if ϵ≪ 1. Then, the envelope evolution
factor is well-approximated by unity if the interval λ is bounded,

λ≪ u(0)2

4
√
Re(L(0)2)

.
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This upper bound on λ increases with greater initial separations ∥u(0)∥. With the acceleration
limit (165) and for the sufficiently brief intervals λ, the envelope evolution correction factor
(164) contributed by substitutions of (166) are negligible,

e4L(0)
2(p−2w(0))·ẇ(0)λ ≈ 1.

Finally, the nonrelativistic, brief interval, limited acceleration approximation is that the
state describing functions U(λ)φ2(0) and φ2(λ) are related

ei(p−2w(λ))·u(λ)e−L(λ)2(p−2w(λ))2 ≈ e−iϕI(λ)e−2iω(p
2
)λ ei(p−2w(0))·u(0)e−L(0)2(p−2w(0))2 (166)

with L(λ)2 from (162) and ϕI(λ) from (163).
The state describing functions φ2(λ) in this demonstration are of the form (137) with the

product description (139) in Jacobi coordinates and with a Gaussian function description (149)
of the relative motion. Approximations for the scalar products and their derivatives follow
from the approximate relation (166) of the quantum and classical descriptions for the relative
motion, the factoring of time evolution, the independence of the descriptions of relative from
center-of-momentum motions, and the selection (142) for the distorted description of the center-
of-momentum for λ > 0 developed in section 4.4.1. Substitution of the brief interval, limited
acceleration approximation (166) into the scalar products (151) and (152) result in

Sm = ⟨U(−λ)φ2(0)|φ2(λ)⟩

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

−2iω(
p′
2
2
)λe−i(p′

2−2w(0))·u(0) e−L(0)2(p′
2−2w(0))2

×ei(p′
4−2w(λ))·u(λ) e−L(λ)2(p′

4−2w(λ))2

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

−2iω(
p′
2
2
)λe−i(p′

2−2w(0))·u(0)e−L(0)2(p′
2−2w(0))2

×e−iϕI(λ)e2iω(
p′
4
2
)λ ei(p

′
4−2w(0))·u(0)e−L(0)2(p′

4−2w(0))2

for the mixed scalar product and

Sλ = ⟨φ2(λ)|φ2(λ)⟩

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

−i(p′
2−2w(λ))·u(λ) e−L(λ)2(p′

2−2w(λ))2

×ei(p′
4−2w(λ))·u(λ) e−L(λ)2(p′

4−2w(λ))2

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

iϕI(λ)e2iω(
p′
2
2
)λ e−i(p′

2−2w(0))·u(0)e−L(0)2(p′
2−2w(0))2

×e−iϕI(λ)e−2iω(
p′
4
2
)λ ei(p

′
4−2w(0))·u(0)e−L(0)2(p′

4−2w(0))2
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for the squared norms. The Hamiltonian derived factors e−2i(ω(
p′
2
2
)−ω(p

′
4
2
))λ = 1 due either to

conservation of momentum, p′
2 = p′

4, from the free field VEV or conservation of energy,

2ω(
p′
2

2
) = 2ω(

p′
4

2
)

from the connected VEV. The unimodular phase factor e−iϕi(λ) contributed by substitution of
(166) distributes out of the summation and therefore does not contribute to likelihood (136).
The approximations for the scalar products neglect terms of O(λ2), are to second order in the
nonrelativistic approximation (120), and apply for limited accelerations (165). The approxima-
tions are to second order in the small quantities

λc∥p′
2−2w(0)∥, λc∥p′

4−2w(0)∥ and λc∥w(0)∥ ≪ 1.

Factors
e−i(p′

2−2w(0))·u(0)ei(p
′
4−2w(0))·u(0) = e−i(p′

2−p′
4)·u(0)

from the common time of the brief interval approximation in (166). The simplifications result
in

Sm ≈ age−iϕI(λ)

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

−i(p′
2−p′

4)·u(0)e−L(0)
2(p′

2−2w(0))2e−L(0)
2(p′

4−2w(0))2

Sλ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

−i(p′
2−p′

4)·u(0)e−L(0)
2(p′

2−2w(0))2e−L(0)
2(p′

4−2w(0))2
(167)

4.4.3 A functional Q(F (q2,q4))

Inspection of the brief interval, nonrelativistic approximations (167) for the scalar products
(151) and (152) identifies

Sm = ⟨U(−λ)φ2(0)|φ2(λ)⟩

≈ e−iϕI(λ)Q(1)

Sλ = ⟨φ2(λ)|φ2(λ)⟩

≈ Q(1)

(168)

with definition of a functional

Q(F (q2,q4)) := ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) F (p

′
2−2w,p′

4−2w)

×eb2·p′
2+b4·p′

4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2 .
(169)
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The generalized function T4(p
′
2,p

′
4) is from the VEV (146) and ag is from (147). σ2, b2 and b4

are complex parameters. These parameters equal

σ2 := L(0)2

b2 := −iu(0)
b4 := iu(0)

(170)

in the approximations for the scalar products (168) and their first derivatives (151)-(159). u(0)
is the initial location of particle one and L(0)2 is the initial complex support spread parameter in
the description of relative motion (149). Relations similar to (168) with multinomials F (q2,q4)
determined in (154)-(159) follow for the approximations for first derivatives. Q(1) does not
vary with λ; the multinomials F (q2,q4) from (154)-(159) include variation with λ.

The functional Q maps multinomials F (q2,q4) of two spatial vectors q2,q4 ∈ R3 to C.
Q(F (q2,q4)) is a linear functional.

Q(αF1 + βF2) = αQ(F1) + βQ(F2)

for α, β ∈ C and multinomials F1(q2,q4), F2(q2,q4). qj indicates a factor of p′
j−2w within the

summation (169). After evaluation of the momentum and energy conservation generalized func-
tions in T4 (146), the summation (169) is absolutely convergent. The dominated convergence
theorem justifies interchange of summation and differentiation. Then,

Q(F (q2,q4)) = ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×F ( ∂
∂b2
−2w, ∂

∂b4
−2w) eb2·p′

2+b4·p′
4e−σ2(p′

2−2w)2 e−σ2(p′
4−2w)2

= F (
∂

∂b2
−2w, ∂

∂b4
−2w)Q(1).

(171)

Q(1) is approximated by elementary functions in appendix 7.14.
If b2 = b4, then Q(F (q2,q4)) is transpose conjugate symmetric. Transpose symmetry of

the real T4(p
′
2,p

′
4) (146) and relabeling of the summation variables p′

2 ↔ p′
4 demonstrates that

Q(F (q2,q4)) = Q(F (q4,q2) ). (172)

From (172), Q(F (q2,q4)) is real for real, transpose symmetric multinomials,

F (q2,q4) = F (q4,q2) = F (q2,q4), (173)

and Q(F (q2,q4)) is imaginary for real, transpose antisymmetric multinomials,

F (q2,q4) = −F (q4,q2) = F (q2,q4).
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4.4.4 Zeros of the derivatives of likelihood |I(λ)|2

From the development in section 4.3, the corresponding classical trajectory u(λ) results in zeros
(132) and (134) of the first derivatives of the likelihood |I(λ)|2. The brief interval, nonrelativis-
tic, limited acceleration approximations of the first derivatives are evaluated in this section. It
follows that the approximations for the derivatives

∂|I(λ)|2

∂β
= 0

without constraints on the classical trajectory u(λ). β is one of three components of u(λ),
one of three components of u̇(λ), or λ. The nonrelativistic, brief interval, limited acceleration
approximations of the derivatives of likelihood |I(λ)|2 provide no insight into the corresponding
classical trajectories but justifies application of condition (135). The condition (135) relates the
quantum and classical descriptions of energy and identifies a corresponding classical pair poten-
tial. This energy correspondence and the corresponding classical pair potential are developed
in section 4.4.5.

Derivatives of the likelihood |I(λ)|2 follow from derivatives of the scalar products for the
unnormalized state describing functions. With the designation (128) for the scalar product of
normalized state describing functions and the chain rule,

∂I(λ)

∂β
=

1√
S0Sλ

∂Sm
∂β
− Sm

2Sλ
√
S0Sλ

∂Sλ
∂β

with the designations for scalar products

Sm := ⟨U(−λ)φn(0)|φn(λ)⟩

≈ e−iϕI(λ)Q(1)

S0 := ⟨φn(0)|φn(0)⟩

≈ e−iϕI(λ)Q(1)

Sλ := ⟨φn(λ)|φn(λ)⟩

≈ e−iϕI(λ)Q(1)

with the notation (153) and from the approximate relation (168) of scalar products and the
functional Q(1). The first derivatives follow as derivatives of Q(1) from (171) after substitution
of (166) into (154)-(159). Since I(λ) ̸= 0, the optimality conditions (131) and (134) are satisfied
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if
∂|I(λ)|2

∂β
= 2Re

(
I(λ)

∂I(λ)

∂β

)
= 2Re

(
Sm
S0Sλ

∂Sm
∂β
− |Sm|

2

2S0S2
λ

∂Sλ
∂β

)
= 0.

S0, Sλ, Sm ̸= 0 and S0, Sλ, |Sm|2 ∈ R. Then

∂|I(λ)|2

∂β
= 0

if and only if

Re
(

2

Sm

∂Sm
∂β

)
− 1

Sλ
Re
(
∂Sλ
∂β

)
= 0. (174)

Expansions of the derivatives of the scalar products in real and imaginary components to
first order in λ are designated

∂Sm
∂β

:= e−iϕI(λ) (cm + idm + λαm + iλϵm)

∂Sλ
∂β

:= cλ + idλ + λαλ + iλϵλ

(175)

with cm, dm, αm, ϵm, cλ, dλ, αλ, ϵλ ∈ R. In this notation,

Re
(

2

Sm

∂Sm
∂β

)
− 1

Sλ
Re
(
∂Sλ
∂β

)
= Re

(
2
cm + idm + λαm + iλϵm

Q(1)

)
−Re

(
cλ + idλ + λαλ + iλϵλ

Q(1)

)
=

2cm−cλ + λ(2αm − αλ)
Q(1)

to O(λ2). The imaginary terms dm, dλ, ϵm, ϵλ do not contribute. Since Q(1) ̸= 0, the brief
interval optimality conditions are satisfied if

2cm−cλ + λ (2αm−αλ) = 0 (176)

for each selection of β from the three components of u(λ), the three components of u̇(λ) and λ.
To further abbreviate notation here and in section 4.4.5, the designations (138) for the initial

conditions of the classical trajectories are designated

u := u(0), u̇ := u̇(0), w := w(0), and ẇ := ẇ(0). (177)



4 QUANTUM-CLASSICAL CORRESPONDENCES 110

Like the approximations to scalar products (168), substitution of (166) provides that the
first derivatives of the scalar products are conveniently approximated with Q(F ). With the
abbreviated notations (167), (177) and (169), the first derivatives of Sm with respect to com-
ponents of u(λ) are from (154),

eiϕI(λ)
∂Sm
∂u(λ)

= Q(i(q4 − 2λẇ))

= iQ(q4)− 2iλẇQ(1).

There is an offset by 2w of the summation variables p′
j from qj in the definition (169) of Q(F ),

and w(λ) is approximated as w + λẇ. In the designations (175), the contributions of Sm to
the derivative of likelihood |I(λ)|2 follow from

cm = Im(Q(q4))
αm = 0.

Derivatives of the squared norm Sλ follow similarly from (155),

∂Sλ
∂u(λ)

= Q(−i(q2 − q4))

= −iQ(q2−q4).

From transpose symmetry (172) of Q(F ),

−iQ((q2 − q4) = 2Im(Q(q4))

In the designations of (175),
cλ = 2Im(Q(q4))
αλ = 0.

Substitution into (176) with β a component of u(λ) produces

0 = 2cm−cλ + λ (2αm−αλ)

= 2Im(Q(q4))− 2Im(Q(q4))

providing that
∂|I(λ)|2

∂u(λ)
= 0 (178)

without constraint on the corresponding trajectory u(λ).
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The derivatives of the mixed scalar product Sm with respect to the components of u̇(λ) are
from (156) in section 4.4.1.

λce
iϕI(λ)

∂Sm
∂u̇(λ)

= Q(
(
−2i(u+ λu̇) + (4L(0)2 − iλcλ)(q4 − 2λẇ)

)
)

= Q(
(
−2iu+ 4L(0)2q4 + λ

{
−2iu̇− iλcq4 − 8L(0)2ẇ)

})
)

= 2iuQ(1) + 4L(0)2Q(q4) + λ
{
(2iu̇− 8L(0)2ẇ)Q(1)− iλcQ(q4)

}
from substitution of (162) for L(λ)2, and linear expansion (160) of u(λ) and w(λ). Then, in
the notation (175), the contributions of Sm to the derivative of likelihood |I(λ)|2 follow from

cm = 4Re(L(0)2Q(q4))

αm = −8Re(L(0)2)ẇQ(1) + λcIm(Q(q4))

with the common scaling by λ−1
c neglected. The derivatives of the squared norm Sλ are from

(157),

λc
∂Sλ
∂u̇(λ)

= Q
(
(4L(0)2 + iλcλ)(q2−2λẇ) + (4L(0)2 − iλcλ)(q4−2λẇ)

)
= Q(4L(0)2 (q2+q4−4λẇ) + iλcλ (q2−q4))

= 4L(0)2Q(q2+q4) + λ
{
−16L(0)2ẇQ(1)+iλcQ(q2−q4)

}
with substitution of (162) for L(λ)2. Q(q2+q4) is real from (173) and

Q(q2+q4) = 2Re(Q(q4))

iQ((q2 − q4) = 2Im(Q(q4))

from (172). In the designations of (175),

cλ = 8Re(L(0)2Q(q4))

αλ = −16Re(L(0)2)ẇQ(1) + 2λcIm(Q(q4))

with the common scaling by λ−1
c neglected.

Substitution into (176) with β a component of u̇(λ) produces

0 = 2cm−cλ + λ (2αm−αλ)

= 8Re(L(0)2Q(q4))− 8Re(L(0)2Q(q4))

+λ(−16Re(L(0)2)ẇQ(1) + 2λcIm(Q(q4)) + 16Re(L(0)2)ẇQ(1)− 2λcIm(Q(q4)))
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providing that
∂|I(λ)|2

∂u̇(λ)
= 0 (179)

also without constraint on the corresponding trajectory u(λ).
Finally, the partial derivative of the mixed scalar product Sm with respect to λ with u(λ)

and u̇(λ) held constant is from (158),

eiϕI(λ)
∂Sm
∂λ

= Q((−2iλ−1
c − iλc

4 (q4 − 2λẇ)2) )

= Q((−2iλ−1
c − iλc

4 q
2
4 + iλλc(q4 · ẇ)))

= −2iλ−1
c Q(1)− iλc

4 Q(q2
4) + iλ {λcQ(q4) · ẇ}

from nonrelativistic approximation, substitution of the expression (162) for L(λ)2, and linear
expansion (160) ofw(λ). The substitution (166) that introduces the factor e−iϕI(λ) is subsequent
to the differentiation by λ. Then, in the notation (175), the contributions of Sm to the derivative
of likelihood |I(λ)|2 follow from

cm = λ2c
4 Im(Q(q2

4))

αm = −λcIm(Q(q4)) · ẇ.

The squared norm is from (159),

∂Sλ
∂λ

= Q(iλc
4

(
(q2 − 2λẇ)2 − (q4 − 2λẇ)2

)
)

= iλc
4 Q(q2

2−q2
4) + λ {−iλcQ((q2−q4) · ẇ)} .

In the designations of (175),

cλ = λ2c
2 Im(Q(q2

4))

αλ = −2λcIm(Q(q4)) · ẇ.

Q(q2−q4) and Q(q2
2−q2

4) are imaginary from (173) and

iQ((q2 − q4) = 2Im(Q(q4))

iQ(q2
2−q2

4) = 2Im(Q(q2
4))

from (172).
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Substitution into (176) with β = λ produces

0 = 2cm−cλ + λ (2αm−αλ)

= 2λ
2
c
4 Im(Q(q2

4))−
λ2c
2 Im(Q(q2

4))

+λ(−2λcIm(Q(q4)) · ẇ + 2λcIm(Q(q4)) · ẇ)

providing that
∂|I(λ)|2

∂λ
= 0 (180)

again without constraint on the corresponding trajectory u(λ).
A most likely trajectory u(λ) is not resolved by maximization of the likelihood (136) within

the nonrelativistic (120), brief interval λ, and limited acceleration (165) approximations. The
derivatives

∂|I(λ)|2

∂β
= 0

for any u(λ), u̇(λ) and β a component of u(λ), a component of u̇(λ), or λ. In the next section,
the optimal trajectory condition (135) that follows if the first derivatives of the likelihood
|I(λ)|2 vanish provides a correspondence of the quantum and classical descriptions of energy
and provides corresponding trajectories.

4.4.5 Energy correspondence and −g/r potentials

In this section, the quantum-classical correspondence (135) is exploited to identify classical tra-
jectories that correspond with the constructed, single neutral scalar field realization of relativis-
tic quantum physics. These classical particle approximations apply when states are described
by functions with isolated (116) concentrations of support well-represented by a single location
(113) and momentum (115), and the momentum support is nonrelativistic (120).

The condition (135) in section 4.3 follows if the likelihood optimizing conditions (131) and
(132) are satisfied, and satisfaction of these condition was demonstrated to O(λ2) with limited
acceleration and nonrelativistic approximations in section 4.4.4. Then (135) provides a corre-
spondence of quantum and classical expressions for energy. Evaluated at λ = 0, (135) provides
that

0 =
∂|I(λ)|
∂λ

= −i⟨Hφ2(0)|φ2(0)⟩
∥φ2(0)∥2

+ i
∂ϕI(λ)

∂λ
+
∂

∂λ

⟨φ2(0)|φ2(λ)⟩
∥φ2(0)∥ ∥φ2(λ)∥

for a likelihood maximizing trajectory u(λ).
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The third term from (135) is zero. Only one coefficient (175) in the evaluation of

∂|I(λ)|2

∂λ

differs from the evaluation of
∂

∂λ

(
⟨φ2(0)|φ2(λ)⟩
∥φ2(0)∥ ∥φ2(λ)∥

)2

. (181)

In the condition (174) equivalent to the vanishing of the partial derivative of likelihood |I(λ)|2
with respect to λ,

Sm = ⟨U(−λ)φ2(0)|φ2(λ)⟩

and
Sm = ⟨φ2(0)|φ2(λ)⟩

for evaluation of (181). Unitarity provides that ∥φ2(λ)∥ is common to both evaluations. The
only coefficient (175) that distinguishes the two evaluations is a removal of ⟨Hφ2(0)|φ2(0)⟩
from dm. The Hermiticity of H provides that ⟨Hφ2(0)|φ2(0)⟩ is real and the contribution of
the removed term is imaginary. The imaginary terms dm do not contribute and the other
coefficients (175) are unchanged, and as a consequence the calculation of the first derivative of
|I(λ)|2 (180) provides that

∂|I(λ)|2

∂λ
=

∂

∂λ

(
⟨φ2(0)|φ2(λ)⟩
∥φ2(0)∥ ∥φ2(λ)∥

)2

= 0

at λ = 0.
Finally, the vanishing of the third term in (135) and the expression (163) for ϕI(λ) provide

that
⟨Hφ2(0)|φ2(0)⟩
⟨φ2(0)|φ2(0)⟩

=
dϕI(λ)

dλ

= (2 + u̇(0)2 + 2ü(0) · u(0)) 1
λc
.

(182)

The expectation value of the energy H approximatess the classical energy (163) of two corre-
sponding classical particles. Equality applies for state describing functions φ2(0) of the form
(139) with (142) and (149) within the fidelity of the nonrelativistic, brief interval and limited
acceleration approximations.

Substitution of the two-argument state descriptions (143) with (142) and (149), and VEV
(146) into the scalar product ⟨Hφ2(0)|φ2(0)⟩ provides

⟨Hφ2(0)|φ2(0)⟩ ≈ 1
2

∫
dp′

1 |f̃M (p′
1;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×H e−i(p′
2−p′

4)·u f̃I(p′
2 − 2w; 0) f̃I(p

′
4 − 2w; 0)
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from the frequency domain representation of the scalar product (145) and with the abbreviated
notation (177) for initial trajectory parameters. The evaluation of Q(1) in appendix 7.14 and
of the expectation value of the energy in appendix 7.15 provides

⟨Hφ2(0)|φ2(0)⟩
⟨φ2(0)|φ2(0)⟩

≈ 2

λc
+

(
3λ2c
16σ2R

+ u̇2

)
QF (1)

λcQ(1)
+

(
λc(r2 + r4)

8σ2R

)2 QC(1)

λcQ(1)

≈ (2 + u̇2 + 2ü · u) 1

λc
.

(183)

The two-point VEV QF (1) and four-point connected VEV QC(1) contributions to Q(1) are
from (280) in appendix 7.14. The rj are

λc(r2 + r4)

8σ2R
= Re(

(
(i
λcu

4σ2R
+ u̇)2

) 1
2

)

from (277) in appendix 7.14, σ2R = Re(L(0)2), and the energy expectation estimate in (183)
applies for a large rj approximation. The energy consists of the rest mass and kinetic energy
of two particles

(2 + u̇2)
1

λc
,

a small zero-point energy contributed by the free field VEV

3λ2c
16σ2R

QF (1)

λcQ(1)
,

and the remainder vanishes if QC(1) vanishes((
λc(r2 + r4)

8σ2R

)2

− u̇2

)
QC(1)

λcQ(1)
≈ 2

ü · u
λc

.

From (280), QC(1) > 0, Q(1) > 0 and the contribution of the potential to the energy is negative,

− λ2cu
2

(4σ2R)
2
≤
(
λc(r2 + r4)

8σ2R

)2

− u̇2 ≤ 0

and the large rj approximation constrains u, u̇ to

Re(
(
(i
λcu

4σ2R
+ u̇)2

) 1
2

)≫ λc
σR

from (275) in appendix 7.14. The zero-point energy is small for nonrelativistic states (150),
λ2c ≪ σ2R. The expected value of the energy of the state described by φ2(0) with an interaction
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characterized by the single neutral scalar field VEV (144) equals a zero-point energy plus the
classical energy of two bodies with a relative motion described by u(λ) and an interaction
characterized by the pair potential 2ü · u.

This correspondence (183) exhibits several properties in common with Schrödinger’s linear
harmonic oscillator example, [48] and section 4. The quantum dynamics determines a cor-
responding state description, σ2 in (102) for the linear harmonic oscillator and L(λ)2 in the
constructed example. There is a correspondence for any classical energy. The state describ-
ing functions that exhibit a quantum-classical correspondence are among the most classical
particle-like and generally do not include energy eigenfunctions. For the linear harmonic oscil-
lator, a mass and spring constant characterize the interaction and σ2 is determined to satisfy
Schródinger’s equation for the classical particle-like Gaussian wave functions. For the con-
structed realization of relativistic quantum physics, the mass and a pair potential parameter g
characterize the interaction. Re(L(0)2) is determined by the quantum-classical correspondence
for classical particle-like Gaussian state describing functions (149). The potential strength g
follows from observation of the corresponding classical trajectories, and L(0)2 is determined
from g and the quantum dynamics that includes the coupling constant c4. c4 = 0 implies that
g = 0 (QC(1) = 0) but otherwise, a range of g are consistent with the VEV. That only particu-
lar Re(L(0)2) exhibit a quantum-classical correspondences but for any energy is a puzzlement,
both here and in Schródinger’s study of the linear harmonic oscillator. Another puzzlement is
how Schrödinger’s equation for nonrelativistic quantum physics emerges from the realizations
of relativistic quantum physics. At the fidelity of the approximations, Schrödinger’s equation
has the same quantum-classical correspondences as the constructed realization of relativistic
quantum physics.

The final development within this section verifies that the 2ü ·u term in the classical energy
is a −g/r pair potential for trajectories u(λ) that satisfy Newton’s equation of motion. u(λ) is
half the two body separation and Newton’s equation for the trajectory u(λ) is then

mc2ü(λ) = −∂V (2∥u(λ)∥)
∂(2u(λ))

from (264) in appendix 7.12 and in the units of this note. Newton’s equation of motion results
in the identification

V (2∥u(λ)∥)
mc2

= 2ü(λ) · u(λ)

= − 1

mc2
∂V (2∥u(λ)∥)

∂u(λ)
· u(λ).

(184)

The corresponding potential satisfies

V (2∥u(λ)∥) = −∂V (2∥u(λ)∥)
∂u(λ)

· u(λ).
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The solution is a −g/r pair potential,

V (2∥u(λ)∥ = −mc2 g

∥2u(λ)∥
.

The characteristic length g determines the strength of the potential. The chain rule provides
that

−
(
∇u

1

∥u∥

)
· u = −

(
∂∥u∥−1

∂∥u∥

)(
∂∥u∥
∂ux

ux +
∂∥u∥
∂uy

uy +
∂∥u∥
∂uz

uz

)
=

1

∥u∥2

(
u2x
∥u∥

+
u2y
∥u∥

+
u2z
∥u∥

)

=
1

∥u∥
.

While maximization of the likelihood provides no insight into the corresponding classical
trajectory, the trajectory optimizing condition (135) that follows with the vanishing of the
derivatives of |I(λ)|2 results in an identification of the corresponding trajectories u(λ) as solu-
tions of Newton’s equation for a −g/r pair potential. Then (183) relates quantum and classical
parameters.

4.5 Extended interval propagation

In this section, satisfaction of the quantum-classical correspondence (123) over brief intervals
is extended to longer intervals.

The quantum-classical correspondence (123)

U(−ℓλ)φ̂n(λo; 0) ≈ eiϕI(ℓλ)φ̂n(λo; ℓλ)

is expressed as a sequence of brief interval approximations,

U(−λ)ℓφ̂n(λo; 0) ≈
(
eiϕI(λ)

)ℓ
φ̂n(λo; ℓλ)

using the group property of time translation and additivity of the phase ϕI(λ). Here, referring
to section 4.3, the notation is augmented to explicitly display the time argument λo of the
state describing function as well as the temporal parameter for the corresponding classical
trajectories.

U(−λ)ℓφ̂n(λo; 0) = φ̂n(λo − ℓλ; 0)
from (33). The error in the quantum-classical correspondence (123) for an interval ℓλ follows
from the approximation errors for each subinterval within ℓλ. The error at step ℓ is described
by state describing functions ϵℓ.

U(−λ)φ̂n(λo − ℓλ; ℓλ) := eiϕI(λ)φ̂n(λo − ℓλ; (ℓ+ 1)λ) + ϵℓ+1. (185)
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The error after accumulation of the ℓ steps of duration λ is described by ϵ.

U(−λ)ℓφ̂n(λo; 0) :=
(
eiϕI(λ)

)ℓ
φ̂n(λo;nλ) + ϵ.

From successive substitution of (185) it follows that

U(−λ)ℓφ̂n(λo; 0) = U(−λ)ℓ−1
(
eiϕI(λ)φ̂n(λo;λ) + ϵ1

)
= eiϕI(λ)U(−λ)ℓ−1φ̂n(λo;λ) + U(−λ)ℓ−1ϵ1

= eiϕI(λ)U(−λ)ℓ−2φ̂n(λo − λ;λ) + U(−λ)ℓ−1ϵ1

= eiϕI(λ)U(−λ)ℓ−3
(
eiϕI(λ)φ̂n(λo − λ; 2λ) + ϵ2

)
+ U(−λ)ℓ−1ϵ1

=
(
eiϕI(λ)

)2
U(−λ)ℓ−4φ̂n(λo − 2λ; 2λ) + eiϕI(λ)U(−λ)ℓ−3ϵ2 + U(−λ)ℓ−1ϵ1

=
.. .

=
(
eiϕI(λ)

)ℓ
U(−λ)−ℓφ̂n(λo − ℓλ; ℓλ) +

ℓ∑
j=1

(
eiϕI(λ)

)j−1
U(−λ)ℓ+1−2jϵj

=
(
eiϕI(λ)

)ℓ
φ̂n(λo; ℓλ) +

ℓ∑
j=1

(
eiϕI(λ)

)j−1
U(−λ)ℓ+1−2jϵj .

Then, the error ϵ after ℓ steps is

ϵ =

ℓ∑
j=1

(
eiϕI(λ)

)j−1
U(−λ)ℓ+1−2jϵj

from the errors ϵj for each subinterval. From the triangle inequality, and unitarity of U(−λ)
and eiϕI(λ),

∥ϵ∥ ≤
ℓ∑

j=1

∥ϵj∥.

The accumulated error grows no faster than the number of subintervals. If the errors ∥ϵj∥ decline
faster than the duration of the subintervals, then the limit of an ever briefer short interval
analysis converges and demonstrates a correspondence over an extended interval. For instance,
if the brief intervals errors were all O(λ2), then the error over a fixed interval would converge as
1/ℓ. However, the nonrelativistic Hamiltonian and limited acceleration approximations improve
linearly with the number of subintervals. Extension of the interval applies only as long C.1-3
remain valid.

Brief interval propagation is also of interest for recurring observations. Recurring observa-
tions, for example, massive bodies awash in photons, are common. Then, an observed trajectory
results from the accumulation of brief interval likelihoods in a random walk composed of the
likely trajectories.
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5 Bound states

Interaction is expressed in the vacuum expectation values (VEV) of fields but not in the Hamil-
tonians (94) in the constructed RQP realizations, section 3. The constructed Hamiltonians
satisfy relativity but exhibit only continuous spectra. As a consequence, description of bound
states with discrete rest masses is an evident question for these constructions. In this section,
the presence of bound states in the constructed realizations of relativistic quantum physics is
demonstrated. There are multiple argument, localized state describing functions with centers-
of-momentum described as free particles and stably localized descriptions for the internals.
These state describing functions evolve as a free particle with a mass that is not necessarily a
multiple of the elementary particle masses, mκ.

One selected example construction suffices to establish existence. The selected construction
has a single, neutral scalar field with one elementary particle of finite mass m, and the bound
state is described by a function in the two-argument subspace of HP . Bound state describing
functions are functions with localized support that evolve as single, free particles. The Hamil-
tonian for evolution of the combined description of the center-of-momentum and bound state
internals is (93) in the two-argument subspace, and this evolution is equivalent to a free particle
description for the center-of-momentum with a periodic evolution for the internals.

Analogously to the many distinct possibilities for bound states within L2 Hilbert spaces in
nonrelativistic quantum mechanics, the Hilbert spaces HP include many descriptions of bound
states. Selection of the bound states of physical interest suggests that conditions in addition to
A.1-7 are required.

5.1 The evolution of bound state describing functions

If a quantum-classical correspondence applies, a bound state consists of two identifiable bodies
stably coupled together by an attractive potential. More generally, a bound state is identified
here as a state describing function with a effective mass that is not necessarily a multiple of the
elementary particle masses, and a stably localized description for evolution of the separations
of arguments. The center-of-momentum, described as a free particle, exhibits with a spreading
of support over time typical of quantum mechanics. The support of the differences of spatial
arguments is periodic over time, with a period determined by binding energy.

An energy

ωb(p) :=
√
λ−2
b + p2 (186)

is defined similarly to the elementary particle energies (8) but with

λb =
ℏ
mbc

, (187)

the reduced Compton wavelength (9) for a bound state rest mass mb.
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The time evolution of the two-argument state describing function φ2((x)2) is described in two
equivalent ways. For the single, neutral scalar field example, the unitary temporal translation
operator (33) and (94) provides

U(λ)φ̃2((p)2) = e−i(p10+p20)λφ̃2((p)2)

= e−i(ω1+ω2)λφ̃2((p)2)

= e−i(ωb(p1+p2)+µb)λφ̃2((p)2)

(188)

in the Fourier transform domain. ω(pj) is the Hamiltonian (93) that applies for each argument
pj . The last line of (188) is the assertion that φ̃2 evolves as a bound state: the center-of-
momentum evolves as a free particle of mass mb with momentum p1 + p2, and the evolution
includes a constant energy offset equal to a binding energy µb. From conservation of energy in
the constructed VEV, this equivalence of energy descriptions provides that

δ(

n∑
j=1

pj0) = δ(ωb(p1 + p2) + µb +

n∑
j=3

pj0)

if the bound arguments are labeled as 1, 2. This ensures both conservation of energy and Lorentz
covariance of the descriptions.

Due to the unitarity of time translation U(λ), (188) is equivalent to

∥|UB(λ)φ̃2⟩ − |φ̃2⟩∥ = 0 (189)

with the operator
UB(λ) = e−iHBλ. (190)

(190) defines a unitarily implemented, one parameter group UB(λ) generated by a densely
defined Hermitian HB, Stone’s theorem [24]. The generator of this group is

HB = ω1 + ω2 − ωb(p1 + p2)− µb
=
√
λ−2
c + 1

4(ρ
2
1 + ρ22 + 2ρ1ρ2 cosϕ12) +

√
λ−2
c + 1

4(ρ
2
1 + ρ22 − 2ρ1ρ2 cosϕ12)

−
√
λ−2
b + ρ21 + λ−1

b − 2λ−1
c

(191)

with a change to Jacobi coordinates,

q1 := p1 + p2, q2 := p1 − p2

ρj := ∥qj∥,
(192)
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ωj := ω(pj) from (8), j ∈ {1, 2} and

q1 · q2 := ρ1ρ2 cosϕ12.

ϕ12 is the angular separation of the momentum vectors q1 and q2. HB = HB(p1,p2) is a
function over rotational invariants ρ1, ρ2 and q1 · q2.

Functions from the null space of the Hermitian Hilbert space operator HB describe bound
states. This contrasts with nonrelativistic quantum mechanics that describes bound states as
eigenfunctions from the discrete spectra of selected Hamiltonian operators. In both instances,
the descriptions of internals have localized support.

The quantum-classical correspondence that applies to scattering events provides a determi-
nation of the binding energy µb. From the cluster decomposition property A.6 of VEV, section
3.2, the bound states and elementary particles have correspondences with classical bodies when
the particles are distantly space-like separated. If the initial state is described by one freely
propagating bound state described by its center-of-momentum plus one distant elementary
particle, and the final state of the scattering event is described by N + 1 elementary particles,
then the collision resulted in dissociation of the bound state and possibly creation of additional
elementary particles. In the center-of-momentum reference frame for the collision, the initial
energy-momenta are

(ω(p1),p1) and (ωb(p1),−p1)

from conservation of momentum. If the final state consists of N + 1 elementary particles that
escape to large space-like separations with no kinetic energy, then the final energy-momenta
are

(N + 1)(λ−1
c ,0).

The binding energy µb is determined by the minimal collision momentum p1 required to disso-
ciate the bound state.

ωb(p1) + ω(p1) = (N + 1)λ−1
c (193)

or

mb =

(
(N + 1)2m2 +m2 − 2(N + 1) m

ℏω(p1)

c

) 1
2

.

Then
0 ≤ mb ≤ Nm

with mb = Nm for ω(p1) = λ−1
c and mb = 0 for

ω(p1) =
(N + 1)2 + 1

2(N + 1)λc
.

The binding energy is designated as the rest mass energy difference of the N free particles and
the bound complex.

µb := Nλ−1
c − λb = (Nm−mb)

c

ℏ
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in the inverse length units of these notes. The demonstration below has N = 2.

µb := 2λ−1
c − λ−1

b (194)

with (9) and (187).
The zeros of HB identify the null space and are used to evaluate the support of state

describing functions. From the definition (191) for the generator of UB(λ) and the evaluation
(194) of µb, HB = 0 follows if

ωb(p1 + p2) + µb = ωb(q1)− λ−1
b + 2λ−1

c

= ω1 + ω2

= ω(12(q1 − q2)) + ω(12(q1 − q2))

=
√
λ−2
c + 1

4(ρ
2
1 + ρ22 + 2ρ1ρ2 cosϕ12) +

√
λ−2
c + 1

4(ρ
2
1 + ρ22 − 2ρ1ρ2 cosϕ12)

in Jacobi coordinates (192). From (191) and with the designation

A1 := ωb(q1) + µb

= ωb(ρ1)− λ−1
b + 2λ−1

c ,
(195)

values of ρ2 that set HB = 0 are solutions to√
λ−2
c + 1

4(ρ
2
1 + ρ22 + 2ρ1ρ2 cosϕ12) +

√
λ−2
c + 1

4(ρ
2
1 + ρ22 − 2ρ1ρ2 cosϕ12) = A1.

Squaring results in

A2
1 = 2λ−2

c + 1
2(ρ

2
1 + ρ22)

+2
√
(λ−2
c + 1

4(ρ
2
1 + ρ22 + 2ρ1ρ2 cosϕ12))(λ

−2
c + 1

4(ρ
2
1 + ρ22 − 2ρ1ρ2 cosϕ12))

= 2λ−2
c + 1

2(ρ
2
1 + ρ22)

+2
√
λ−4
c + 1

2λ
−2
c (ρ21 + ρ22) +

1
16((ρ

2
1 + ρ22)

2 − 4ρ21ρ
2
2 cos

2 ϕ12)

Reorganization and squaring again results in a linear function of ρ22.

(12A
2
1 − λ−2

c − 1
4(ρ

2
1 + ρ22))

2 = λ−4
c + 1

2λ
−2
c (ρ21 + ρ22) +

1
16((ρ

2
1 + ρ22)

2 − 4ρ21ρ
2
2 cos

2 ϕ12).

Collecting terms results in

ρ22 =
A2

1(A
2
1 − 4λ−2

c − ρ21)
A2

1 − ρ21 cos2 ϕ12
≥ 0
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for any ρ1, ϕ12, λ
−1
b , λ−1

c . Only the nonnegative root applies. (195) and ωb(ρ1) ≥ λ−1
b provides

that

A2
1 = λ−2

b + ρ21 + 2ωb(ρ1)(2λ
−1
c − λ−1

b ) + 4λ−2
c − 4λ−1

c λ−2
b + λ−2

b

≥ 4λ−2
c + ρ21.

(196)

Designate the value of ρ2 that sets HB = 0 as

ρ2o :=

√
A2

1(A
2
1 − 4λ−2

c − ρ21)
A2

1 − ρ21 cos2 ϕ12
, (197)

a function over ρ1 and ϕ12. From (196), A2
1 > 0, A2

1 − 4λ2c − ρ21 ≥ 0 and equals zero at ρ1 = 0,
and the denominator is never zero: A2

1− ρ21 cos2 ϕ12 > 0 for finite mass m elementary particles-
For ρ1 ≪ λ−1

c ,
ρ2o ≈ ρ1. (198)

ρ2o is zero for ρ1 = 0 and is finite otherwise for finite masses m.
Finally, a condition that ensures that a two-argument state describing function (188) behaves

in time as a bound state is limitation of the support of bound state describing functions to the
null space of HB. With limitation of the support to the null space of HB, (189) is satisfied.
The suggested two-argument bound state describing functions become

φ̃2(p1, p2) = (p10 + ω1)(p20 + ω2)
∣∣∣∂HB
∂ρ2

∣∣∣ δ(HB)f̃2(p1 + p2,p1 − p2)

= (p10 + ω1)(p20 + ω2) δ(ρ2 − ρ2o)f̃2(q1,q2).
(199)

These functions φ̃2 over energy-momenta p1, p2 are of the form (7) and follow from functions
f̃2q1,q2) with support constrained by the delta function δ(HB). ρ2o is from (197). The p1+p2

dependence describes the center-of momentum and p1 − p2 describes relative motion within
the bound state. Nonrelativistically these descriptions are independent (139), but relativistic
length contraction and time dilation raises the concern that the two descriptions are coupled.
Nonetheless, even with relativity, H = ω1 + ω2 = ωb(p1 + p2) + µb in the null space of HB and
the Hamiltonian H = ω1 + ω2 decomposes as a sum of functions over p1 + p2 and p1 − p2.
This description of bound state describing functions, particularly that the description is within
one constant time plane, is peculiar to selected frames of reference. The constructed transition
amplitudes are Poincaré covariant, A.3.

δ(ρ2− ρ2o)f̃2(q1,q2) ̸∈ S(R6) and it must be determined whether the φ2((x)2) suggested in
(199) are elements of HP . An arbitrarily accurate approximation of (199) by elements of HP
is developed in section 5.2.
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5.2 Approximation by elements of HP

This section includes a demonstration that the suggested φ2((x)2) in (199) has a divergent
norm and consequently is not an element of HP . It is then demonstrated that elements of HP
arbitrarily accurately approximate the bound state describing functions (199).

The frequency domain representation (108) of the scalar product with the single, neutral
scalar field VEV (144) provides the Hilbert space norm of two-argument state describing func-
tions of the form (199).

∥φ2∥2 =

∫
d(p)4

∣∣∣∂HB(p1,p2)
∂ρ2

∣∣∣ δ(HB(p1,p2))f̃2(p1 + p2,p1 − p2)

×
∣∣∣∂HB(p3,p4)

∂ρ4

∣∣∣ δ(HB(p3,p4))f̃2(p3 + p4,p3 − p4)

×
(
4
δ(p1−p3)δ(p2−p4) + δ(p1−p4)δ(p2−p3)√

ω1ω2ω3ω4

+ c4δ(ω1+ω2−ω3−ω4)δ(p1+p2−p3−p4)
)

(200)

from (145) without the nonrelativistic approximations. ρ4o is the evident revision of ρ2o from
(197). The contribution from the first term is

4

∫
d(p)2

∣∣∣∣∂HB(p1,p2)

∂ρ2

∣∣∣∣2 δ(HB(p1,p2))
2 |f̃2(p1 + p2,p1 − p2)|2

ω1ω2

and the squared delta function diverges. Without mollification, bound state describing functions
(199) are not elements of HP .

A convenient mollification that approximates the bound state describing function (199)
arbitrarily well substitutes a test function of ρ2 − ρ2o,

δ(ρ2 − ρ2o) 7→ gL(ρ2 − ρ2o) :=
(
L2

π

) 3
2

e−L2(ρ2−ρ2o)2 , (201)

for the support limiting delta function. The delta function is well approximated for finite
L → ∞. With the mollification, the bound state describing function (199) is absolutely
summable over q1,q2. The gL(ρ2 − ρ2o) are not test functions over (q)2 since, developed
below in section 5.3, ρ2o is not continuously differentiable with respect to the components qjν
of q1,q2. Similarly, the convenient factor |∂HB/∂ρ2| in (199) is not infinitely differentiable but
is absolutely summable.

∂HB

∂ρ2
=

ρ2+ρ1 cosϕ12

4
√
λ−2
c + 1

4(ρ
2
1+ρ

2
2+2ρ1ρ2 cosϕ12)

+
ρ2−ρ1 cosϕ12

4
√
λ−2
c + 1

4(ρ
2
1+ρ

2
2−2ρ1ρ2 cosϕ12)

(202)

from (191).
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With the mollification (201), the norm (200) of ∥φ2∥ is finite in three or more spacetime
dimensions for a finite mass m. The singularity from the energy conservation delta function in
the higher order connected functions is summable in three or more spacetime dimensiond and
then the summation (200) of regular functions of rapid decline at large values over the indicated
surfaces within R6 is finite. Convergence of the summations follows from the demonstration of
A.1, section 3.5.5.

5.3 Localized spatial support

In this section, it is demonstrated that the spatial support at time zero of the bound state
describing function (201) is localized and the breadth of support of the description of the
internals does not grow over time. The breadth of support of the description of the center-of-
momentum exhibits free particle growth with time.

The inverse Fourier transform of the mollified function

ũ2(q1,q2) := gL(ρ2 − ρ2o)f̃2(p1 + p2,p1 − p2) (203)

approximates the dominant support of the bound state describing function φ2((x)2) in (199).
gL(ρ2 − ρ2o) designates the mollification (201) of the delta function that restricts the support
of φ2 to the null space of HB. q1,q2 are the Jacobi coordinates (192). From (254) in appendix
7.10, the inverse Fourier transform u2 of ũ2 characterizes the dominant spatial support of φ2.

φ2(x1, x2) = 2π
2∏
j=1

(
δ(xj0)

√
−∆j + λ−2

c − iδ′(xj0)

)
u2(x1,x2)

with ∆j the Laplacian for xj ∈ R3.
√
−∆+ λ−2

c is an anti-local operator [52] and as a con-
sequence, φ2 is only essentially localized even when the support of u2 is strictly local. From
(114), the physically relevant spatial support ⟨(y)k|φ2⟩ of the state describing function φ2((x)2)
at time zero (109) is characterized by the support of φ2(x1, x2) as a function. The VEV con-
tribute to the breadth of support, but the connectivity of the VEV provide that the support
of ⟨(y)k|φ2⟩ is localized if the support of u2(y1,y2) declines with separations from the origin.
ũ2(q1,q2) is selected to center the support of u2(y1,y2) on the origin.

y1 :=
x1 + x2

2
, y2 :=

x1 − x2

2

are Jacobi spatial coordinates.
The dominant support over y1,y2 of the inverse Fourier transform u2(y1,y2) characterizes



5 BOUND STATES 126

the physically relevant support ⟨(y)k|φ2⟩ of the bound state describing function.∫
d(p)2

eip1·x1eip2·x2

(2π)3

∣∣∣∂HB(p1,p2)
∂ρ2

∣∣∣ δ(HB(p1,p2))f̃2(p1 + p2,p1 − p2)

≈
∫
d(q)2

eiq1·y1eiq2·y2

(4π)3
gL(ρ2 − ρ2o)f̃2(q1,q2)

= u2(y1,y2)

(204)

with f̃2 selected to achieve centered, localized support, ρ2 is from the Jacobi coordinates (192)
and ρ2o is the function of ρ1 and q1 · q2 from (197). In the Jacobi coordinates,

p1 · x1 + p2 · x2 = q1 · y1 + q2 · y2

and the determinant of the Jacobian matrix for the variable change is 2−3.
Absolute summability of derivatives of the mollified function (203) with respect to the

components qjν of q1,q2 suffices to bound the dominant support of u2(y1,y2). j ∈ {1, 2} and
ν ∈ {x, y, z}. For finite L,

∣∣∣yk11ν1yk22ν2 u2(y1,y2)
∣∣∣ =

∣∣∣∣∣
∫
d(q)2

(
∂k1

∂qk11ν1

∂k2

∂qk22ν1

eiq1·y1eiq2·y2

(4π)3

)
ũ2(q1,q2)

∣∣∣∣∣
=

∣∣∣∣∣
∫
d(q)2

eiq1·y1eiq2·y2

(4π)3

(
∂k1

∂qk11ν1

∂k2

∂qk22ν1
ũ2(q1,q2)

)∣∣∣∣∣
≤
∫
d(q)2

∣∣∣∣∣ ∂k1∂qk11ν1

∂k2

∂qk22ν1
ũ2(q1,q2)

∣∣∣∣∣
(205)

from integration by parts and the vanishing of the test functions at the limits of summation.

rj := ∥yj∥

are Euclidean norms. The upper bound (205) is independent of the yk11ν1y
k2
2ν2

and provides that

u2(y1,y2) must decline at least proportionately for large |yk11ν1y
k2
2ν2
|.

The test functions f̃2(q1,q2) ∈ S(R6) in (203) are infinitely differentiable but gL(x) ∈ S(R)
are functions of ρ2 − ρ2o and develop singularities with differentiations of ρ2o and ρ2 resulting
from the chain rule. The chain rule provides

∂gL(ρ2 − ρ2o)
∂qjν

= −∂gL(ρ2 − ρ2o)
∂(ρ2 − ρ2o)

(
∂(ρ2 − ρ2o)

∂qjν

)
(206)
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for j ∈ {1, 2} and ν ∈ {x, y, z}. From the product rule,

∂(ρ2 − ρ2o)
∂q1ν

= − 1

2ρ2o

∂(ρ2o)
2

∂q1ν
∂(ρ2 − ρ2o)

∂q2ν
=

∂ρ2
∂q2ν

− 1

2ρ2o

∂(ρ2o)
2

∂q2ν
.

(207)

From (197), ρ22o is a ratio of multinomials in ρ1 and cosϕ12 with a denominator that does
not vanish. Then the quotient rule provides that ρ22o is infinitely differentiable with respect to
ρ1 and cosϕ12 considered as independent variables. From (198), the factor 1/ρ2o is singular,
1/ρ2o = 1/ρ1 for ρ1 → 0. Singularities also develop in derivatives of ρ1 and cosϕ12 with respect
to the qjν .

The derivatives of (ρ2o)
2 with respect to the qjν are developed using the chain rule.

∂(ρ2o)
2

∂q1ν
=
∂(ρ2o)

2

∂ρ1

∂ρ1
∂qjν

+
∂(ρ2o)

2

∂ cosϕ12

∂ cosϕ12
∂qjν

∂(ρ2o)
2

∂q2ν
=

∂(ρ2o)
2

∂ cosϕ12

∂ cosϕ12
∂q2ν

.

(208)

Factors
∂ρj
∂qjν

=
qjν
ρj

satisfy the bound |qjν/ρj | ≤ 1 and are regular. Higher derivatives diverge, for example

∂2ρ2
∂q2ν

=
1

ρ2
− q22ν
ρ32

diverges as 1/ρ2 for ρ2 → 0.
The derivative of ρ22o with respect to cosϕ12 includes a zero at ρ1 = 0.

∂(ρ2o)
2

∂ cosϕ12
= − 1

2ρ2o

A2
1(A

2
1 − 4λ−2

c − ρ21)
(A2

1 − ρ21 cos2 ϕ12)2
2ρ21 cosϕ12

= − ρ2o ρ
2
1 cosϕ12

A2
1 − ρ21 cos2 ϕ12

.

The cosine of the angular separation ϕ12 of q1 and q2 is

cosϕ12 =
q1xq2x + q1yq2y + q1zq2z

ρ1ρ2
. (209)
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The quotient rule results in

∂ cosϕ12
∂qjν

=

qℓνρ1ρ2 − (q1xq2x + q1yq2y + q1zq2z)
qjν
ρj
ρℓ

ρ21ρ
2
2

=
qℓν
ρ1ρ2

− cosϕ12
qjν
ρ2j
.

(210)

ℓ is the other index given j: ℓ = 2 if j = 1 and ℓ = 1 if j = 2. Then, (210) diverges as 1/ρj for
ρj → 0. The product

∂(ρ2o)
2

∂ cosϕ12

∂ cosϕ12
∂qjν

= − ρ2o ρ
2
1 cosϕ12

A2
1 − ρ21 cos2 ϕ12

(
qℓν
ρ1ρ2

− cosϕ12
qjν
ρ2j

)
is regular for j = 1 but diverges as 1/ρ2 for ρ2 → 0 for j = 2.

Collecting results and considering only the most singular term, the singularities of the first
derivatives (206) are

∂gL(ρ2−ρ2o)
∂q1ν

= O
(

1

ρ1

)
,

∂gL(ρ2−ρ2o)
∂q2ν

= O
(

1

ρ1ρ2

)
for ρ1, ρ2 near zero. The measure d(q)2 contributes ρ21ρ

2
2 that eliminates these divergences and

the first derivatives of the mollified ũ2(q1,q2) are absolutely summable in four or more spacetime
dimensions. Summability of the singularity from the energy conservation delta function in the
higher order connected functions requires three or more spacetime dimensions, section 3.5.5,
and four spacetime dimensions suffices to regularize the bound on the first derivative. Then,
the Cauchy-Schwarz-Bunyakovsky inequality demonstrates that

|(αxyjx + αyyjy + αzyjz)u2(y1,y2)| < Cj∥α∥

for a finite constant Cj , and all αx, αy, αz ∈ R3. ∥α∥2 = α · α, the Euclidean norm. With
rj := ∥yj∥, the decline of u2(y1,y2) for rj → ∞ is 1/rj without a constraint on f̃2(q1,q2).
The absolute summability of higher derivatives of (203) follow if f̃2(q1,q2) contributes zeros at
ρ1 = 0 and ρ2 = 0. Zeros result in demonstrations of more rapid decline of u2(y1,y2). From the
equality (188), the localization implying bound for the decline with r2 is independent of time
since the effective Hamiltonian depends only on q1. The description of the separation x1 − x2

is consequently constant with time.

6 Technical concerns with canonical quantization

Inquiry into an appropriate mathematical development of quantum mechanics was initiated
notably by John von Neumann. This inquiry has been extended by Léon van Hove, Res Jost,
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Rudolf Haag, Arthur Wightman, Huzihiro Araki, Nikolay Bogolubov, Hans-Jürgen Borchers,
Raphael Høegh-Krohn, Franco Strocchi and many others [9, 65]. Their developments use the
concept of Hilbert space advanced notably by David Hilbert, Erhard Schmidt, Frigyes Riesz,
Marshall Stone and John von Neumann. The discussion here distinguishes a general develop-
ment of quantum mechanics from a canonical formalism development. The general develop-
ment includes: quantum mechanics describes the states of nature as elements of rigged Hilbert
spaces; the evolution of the observable features of appropriate states is well-approximated by
classical mechanics; energies are nonnegative; the temporal evolution of state descriptions is
unitary (likelihood preserving) and causal; likelihoods of observation are calculated from Born’s
rule; and likelihoods, like events, are relativistically invariant. The canonical formalism adds
the conjecture that the quantum-classical correspondence is established be associating classical
dynamical variables with densely defined Hermitian operators [13, 56, 59]. Concerns with the
canonical formalism are introduced in section 2. This section extends the discussion of technical
concerns with the canonical formalism for quantum mechanics.

Quantum mechanics has provided an expanded and successful description of nature. Nev-
ertheless, and emphasized by von Neumann, issues remain even in the development of nonrela-
tivistic quantum mechanics [59]. The canonical formalism [13, 24, 56, 60] “quantizes” classical
dynamics. If classical dynamical variables quantize to Hermitian Hilbert space operators and
there is a “quantization” of the corresponding classical dynamics, is it a concern that while func-
tions of classical dynamical variables are classical dynamical variables (for example, generalized
coordinates), products of Hermitian operators are not necessarily Hermitian operators? Are
some classical quantities distinguished by having quantizations while other quantities do not?
Or is it a concern that the (generalized) eigenfunctions of operators associated with observables
by the canonical formalism are not always elements of the Hilbert space, that is, do not de-
scribe states in nature? In such cases, what state results from a “collapse to an eigenfunction of
the observable?” The Schrödinger representation of location Xν and momentum Pν operators
satisfy the Born-Heisenberg-Jordan relation [Xν , Pµ] = −iℏδν,µ and serve as archetypes for a
quantization of classical dynamical variables. These Xν and Pν apply in the L2 Hilbert spaces
suitable for nonrelativistic quantum mechanics. In the following few paragraphs, the discussion
includes that: the eigenfunctions of the operators Xν and Pν are not elements of L2 Hilbert
spaces; locations and momenta associated with state describing functions are well-defined as
observable features even when expectations of the corresponding operators Xν and Pν diverge;
the quantization of location Xν fails to be a Hermitian operator even in relativistic free field
theory; and the quantization of products of locations x and momenta p are not necessarily
Hermitian operators even in nonrelativistic quantum mechanics. Each of these points is a dif-
ficulty or ambiguity for canonical quantization. Together contradictions motivate a revised
quantum-classical correspondence.

First, greater detail on Hilbert space operators is introduced. Discussion is limited to the
complex Hilbert spaces of interest. Study of Hilbert space operators, particularly unbounded
operators in infinite dimensional Hilbert spaces, is a subtle and elegant subject [39] that illus-
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trates many of the “paradoxes of infinity.” In appendix 7.2.5, a Hilbert space operator A is
introduced as a mapping of elements from a Hilbert space H back into H, A : H 7→ H. If

|Aψ⟩ = |g⟩

then |ψ⟩ ∈ DA ⊆ H, the domain of A, and |g⟩ ∈ RA ⊆ H, the range of A. The domains of
bounded operators can be extended to the entire H. A is bounded if ∥Aψ∥ ≤ c∥ψ∥ for some
c ∈ R independently of the element |ψ⟩. The least upper bound c defines an operator norm
∥A∥. The domain of an unbounded A is necessarily a proper subset of the Hilbert space but
the domain may be dense in H. A set of elements |en⟩ is dense in H if every |ψ⟩ ∈ H is within
an arbitrarily small neighborhood of a finite linear combination of the |en⟩,

∥ψ −
N∑
n=1

cnen∥ < ϵ

for N > Nϵ with the cn ∈ C and ϵ→ 0 as N grows. A separable Hilbert space has a denumerable
(finite or infinite) dense set of elements |en⟩. An example is that functions in the Schwartz
function space S [20] are dense in the square-summable functions in L2. L2 has a dense,
denumerable basis. For an unbounded operator B, a subsequence from a diverging sequence
|Bun⟩ can be selected and relabeled such that ∥Bun|| > n∥un∥. Then, the neighborhood of
each element |ψ⟩ with |Bψ⟩ ∈ H contains a sequence constructed below with ∥B (ψ − ψn)∥ >
n ∥ψ − ψn∥ for n growing without bound and ∥ψ − ψn∥ → 0. That is, an unbounded operator
is not continuous anywhere in the Hilbert space. Indeed, using the divergent sequence |un⟩
selected above, set

|vn⟩ :=
|un⟩
n∥un∥

, and then ∥Bvn∥ =
∥Bun∥
n∥un∥

> 1.

The sequence |ψn⟩ := |ψ⟩ + |vn⟩ is a convergent sequence, ∥ψ − ψn∥ = ∥vn∥ = 1/n → 0, but
∥B (ψ − ψn)∥ = ∥Bvn∥ > 1. Then generally, neighboring states within a Hilbert space do
not have nearly the same observables when observables are associated with unbounded Hilbert
space operators.

In contrast, states exhibit observable features even when the expectation values of corre-
sponding operators diverge or when the operation is undefined. For the example of location,

ψ(x) = e−x2/(4σ2) +
ϵ

(1 + x2)1−δ

is dominantly supported near x = 0 for 0 < ϵ, δ ≪ 1 with the length σ determining the size of the
neighborhood. The σ, ϵ, δ can be selected to provide an arbitrarily large likelihood that an ob-
servation of location is near x = 0. For the dominant support, the likelihood that the perceived
location will be within a finite volume of dominant support is much greater that the likelihood
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the perceived location will be from any other disjoint, equal volume. In this interpretation, the
likely location is near x = 0 for the state described by ψ(x) even though ⟨ψ|xψ⟩ diverges. For
location, xν 7→ Xν is the Hilbert space location operator, and the expectation value ⟨ψ|Xνψ⟩
diverges even though the likely perception of the body described by ψ(x) is that the body will
be observed near the origin. The likelihood comparison is made for observations over finite
volumes. At large x2 (the unobservable “far side of the moon”), there is a small likelihood of
detection within any finite volume but a sufficient volume for the mean value to diverge. There
is no actual divergence since we are not capable of detecting location over infinite volumes. Our
measurements are always localized; location Xν and momentum Pν are idealized observables.
Actual observations are limited to finite, localized volumes: without an omniscient classical
observer, no knowledge of infinite volumes is available. The likelihoods of physical interest
are relative likelihoods of detection comparing finite volumes. Unknowable, distant support of
functions only hypothetically affects our considerations. In the example, ∥ψ(x)− e−x2/(4σ2)∥ is
small, they are neighboring states, but ∥Xνψ(x)−Xνe

−x2/(4σ2)∥ is divergent in the L2 norm.
Correspondence with the classical concepts of location and momentum is provided by the

support of the functions that describe states. Considering support, the likelihoods of observa-
tions of location and momenta are nearly the for state describing functions that have nearly the
same support. The support of state describing functions are more robust and consistent ob-
servable features than expected values of unbounded, densely defined Hermitian Hilbert space
operators like Xν and Pν .

The observables, location, momentum and field strength, are anticipated to have eigenvalues
for every real number. As a consequence, their eigenfunctions cannot be elements of HP . At
best, their eigenfunctions are generalized eigenfunctions, [21] and appendix 7.2.1. Eigenfunc-
tions with distinct eigenvalues of a Hermitian operator are orthogonal [45] and there can only
be a countable number of mutually orthogonal functions within the separable Hilbert spaces of
interest [10]. Observation of location, momentum and field strength can not be “collapse” to an
eigenfunction of the observable: generalized eigenfunctions are not admissible state describing
functions.

Introduced in section 2, extrapolation of the quantized location operator Xν to relativistic
physics does not succeed. With consideration of relativity, the Xν that results from quanti-
zation of the classical dynamical variables xν are not Hermitian operators. As illustrated in
appendix 7.2.6, operators whose eigenvalues are observable quantities must be Hermitian. Tran-
sition likelihoods are determined by the scalar product and these likelihoods describe events
independently of inertial observer. As a consequence, the scalar product must be a Lorentz
invariant in relativistic physics. The scalar product (22), and the Källén-Lehmann form for the
two-point function as a nonnegative summation over masses of the Pauli-Jordan function result
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in consideration of

⟨X∗
νψ|g⟩ = ⟨ψ|Xνg⟩

=

∫
dxdy ∆+(y − x)ψ(y)xνg(x)

̸= ⟨Xνψ|g⟩

=

∫
dxdy ∆+(y − x) yνψ(y) g(x)

since the Pauli-Jordan function is not of point support in spacetime, xν∆
+(y−x) ̸= yν∆

+(y−x).
Then X∗

ν ̸= Xν for ψ, g ∈ DXν . The elevation of xν to Hilbert space operator Xν is not Hermi-
tian in relativistic quantum mechanics. This “localization problem” is one of many problems
that develop with the canonical formalism. In contrast, the energy-momentum operators,

n∑
ν=1

Pν

in the n-argument subspace, are generators of translations in a unitary realization of the trans-
lation group and are self-adjoint as a consequence of Stone’s theorem [24, 39]. In the argument
above, ⟨ψ|Pνg⟩ = ⟨Pνψ|g⟩ follows from the point support of the Källén-Lehmann form in the
momentum domain,

pνδ(p− q) = δ(p− q)qµ.

A unitary realization of the translation group results from translation invariance of the scalar
product. Location, an observable of evident importance in physics, does not correspond pre-
cisely to the elevation of xν in relativistic quantum mechanics. Discussed in section 2 and
appendix 7.4, the Hermitian operator associated with location is not the quantization of xν .
Suitable location operators are determined by the relativistically invariant localized functions
that describe those states that most closely correspond to a body at a particular location in
relativistic quantum physics. These forms [42] are discussed in appendix 7.3.

Quantizations of classical dynamical variables can be excluded as Hermitian operators even
in ordinary (nonrelativistic) quantum mechanics. The product x3p can be considered a classical
dynamical quantity and in ordinary quantum mechanics with a single spatial dimension, the
corresponding operator in L2 should be the formally Hermitian

iℏx3/2
d

dx
x3/2 = iℏ(

x3

2

d

dx
+

d

dx

x3

2
)

since the classical dynamic variables x and p correspond to unbounded, self-adjoint operators x
and iℏd/dx in this one spatial dimensional L2 example. However, this densely defined, formally
Hermitian operator that corresponds with x3p has square-summable eigenfunctions

sλ(x) :=
√
2λ

exp (−λ/(2x2))
x3/2
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with imaginary eigenvalues −iℏλ [9]. 0 < λ ∈ R. As a consequence, X3/2PX3/2 is not a
densely defined Hermitian operator in the L2 Hilbert space. This sλ(x) ∈ L2 is defined for
x > 0 and equals zero otherwise, or sλ(x) can be extended to negative x. The formally
Hermitian operator X3/2PX3/2 that corresponds to x3p is not Hermitian for L2 although x3p
is well-defined in classical dynamics. Nevertheless, for the example of linear harmonic motion
and minimum uncertainty support states st(x) with small spatial variances, the trajectory of
x3p given by Newtonian mechanics approximates ⟨st|X3/2PX3/2st⟩ from quantum dynamics
[33, 48]. This establishes that there are particular states with real ⟨st|X3/2PX3/2st⟩ that agree
with the classical approximations x3p even though X3/2PX3/2 is not a Hermitian operator.
The Hermitian operator corresponding to x3p need not be the elevation of x3p. Once again,
the support of functions for appropriate state describing functions exhibit quantum-classical
correspondence while a correspondence of classical dynamical variable with an operator fails.
Even when the operator that is the quantization of the classical dynamical variable is not
Hermitian, the classical dynamics can approximate the quantum mechanics for appropriate
states.

7 Appendices

7.1 The Dirac-von Neumann axioms for quantum mechanics

The Dirac-von Neumann axioms describe nonrelativistic quantum mechanics. Here, the state-
ment of the Dirac-von Neumann axioms is adapted from F. Strocchi’s discussion [56].

I. Observables: The Hermitian operators A corresponding to the observables of a quantum
mechanical system are within the algebra of bounded self-adjoint operators B(H) for a
separable Hilbert space H.

II. States: The pure states of a quantum mechanical system are described by rays a|s⟩,
|s⟩ ∈ H, a ∈ C and a ̸= 0. More generally, a state is described by a nonnegative, unit
trace, state density operator ρ ∈ B(H).

III. Expectations: If a state is represented by the normalized pure state |s⟩ ∈ H, then, for
the observable corresponding to A ∈ B(H), the experimental expectation is ⟨s|As⟩. More
generally, experimental expectations are Trace(Aρ). If A has a complete set of normalized
eigenvectors |en⟩ ∈ H, then

⟨s|As⟩ =
∑
n

λn|⟨en|s⟩|2

and from Born’s rule, the likelihood of observing λn is |⟨en|s⟩|2. More generally, A is
described by the spectral theory for rigged Hilbert space operators (theorem 1, appendix
to section 4 [21], lemma 5.6.7 [39], chapters 7-10 [24]).
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Axioms I-III describe a Hilbert space realization of quantum mechanics and are implicit in
the development of section 3. Conditions A.1 and A.2 of section 3.2 imply a Hilbert space
realization. State density operators ρ ∈ B(H) are discussed in section 7.2.6. States are described
by elements of the Hilbert space: limits of states such as the eigenfunctions of location and
momentum are in the dual to the basis function spaces but depart from the rigged Hilbert
spaces of interest [9]. Superselection sectors in the Hilbert spaces of interest illustrate that not
all Hilbert space elements represent states of nature. Hilbert spaces of interest are represented as
direct sums of superselection sectors and the observables are associated with operators limited
to within sectors. The limitation of observables to bounded operators departs from Dirac’s
development but reflects that only finite values are observable, for example, locations within
an accessible, finite volume. Limiting consideration to bounded operators provides several
technical conveniences [24, 56] as well as conceding to physical reality.

Axioms I-III describe a general Hilbert space realization of quantum mechanics. Character-
ization of the observables remains. Dirac-von Neumann axioms IV-V determine properties of
particular operators.

IV. Dirac canonical quantization: The Hermitian operators that describe canonical coordi-
nates qi and momenta pj , i, j = 1, . . . N , obey canonical commutation relations

[qi, qj ] = 0

[pi, pj ] = 0

[qi, pj ] = −iℏδij .

V. Schrödinger representation: The canonical commutation relations are realized in the
Hilbert space

H := L2 = {ψ(x)|
∫
dx |ψ(ct,x)|2 <∞, x ∈ R4,x = x1, x2, x3}

by:

|qiψ⟩ := xi |ψ⟩

|piψ⟩ := −iℏ | ∂ψ
∂xi
⟩.

In the Dirac-von Neumann axioms, canonical variables qi, pi are quantizations of classical dy-
namical variables. If the canonical variables qi, pi are location and momentum, respectively, the
canonical commutation relations are known as the Born-Heisenberg-Jordan relations. In the
L2 Hilbert space applicable to nonrelativistic physics, these quantizations result in unbounded
Hermitian Hilbert space operators qi, pi, violating I. The correspondence in axiom V is the
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“elevation of c-number to q-number” for qi. Unboundedness introduces the consideration that
sums of observables are not necessarily observables (if necessarily limited domains are suffi-
ciently disjoint) [24]. And, the (generalized) eigenfunctions of location and momentum are not
elements of the Hilbert space. These and additional difficulties with the canonical formalism
are discussed in section 6. Axiom V describes a particular, nonrelativistic quantum-classical
correspondence for location and momentum. The canonical formalism extrapolates axioms IV-
V with fields as canonical coordinates [60]. Axiom IV remains valid for location and momentum
in the constructions.

The lack of a clear distinction between the role of the two sets of axioms, I, II, III and
IV,V, is at the origin of the widespread point of view, adopted by many textbooks, by
which all of them are characteristic of quantum systems. The distinction between
classical and quantum systems is rather given by the mathematical structure of
[the algebra of observables] and it will have different realizations depending on the
particular class of systems. – Franco Strocchi [56].

7.2 Hilbert spaces and quantum mechanics

7.2.1 Hilbert spaces

A Hilbert space H is characterized by the number of linearly independent elements. For every
two elements in the complex Hilbert spaces of interest here, there is a complex number ⟨f |g⟩,

f, g ∈ H 7→ ⟨f |g⟩ ∈ C

designated the scalar product of the elements. Properties of this scalar product include that
⟨g|f⟩ is the complex conjugate of ⟨f |g⟩ and the scalar product is linear in the second argument,
⟨f |αg+ βh⟩ = α⟨f |g⟩+ β⟨f |h⟩ for α, β ∈ C, and as a consequence, complex conjugate linear in
the first argument. Scalar products are nonnegative, ⟨f |f⟩ ≥ 0, and this provides satisfaction
of the Cauchy-Schwarz-Bunyakovsky inequality,

|⟨g|f⟩|2 ≤ ⟨g|g⟩⟨f |f⟩.

In particular, if ⟨f |f⟩ = 0, then ⟨g|f⟩ = 0 for every element |g⟩ of the Hilbert space. The
zero element is unique in a Hilbert space. A degenerate scalar product has all the properties
of a scalar product except for uniqueness of the zero element. A degenerate scalar product
(22) is defined for pairs of function sequences from the basis spaces P considered as a linear
vector space. The Hilbert spaces of interest are the completions of linear vector spaces with
elements that are equivalence classes of vectors labeled by function sequences [12]. The elements
of the Hilbert space may be characterized by any function sequence in an equivalence class.
An isometry extends the degenerate scalar product to a scalar product: the elements of the
Hilbert space are equivalence classes of functions equal in the norm (21) and ⟨f |f⟩ = 0 states
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that the function sequence f is an element of the equivalence class of zero. The separation
of two Hilbert space elements g, f is ∥g − f∥ using the norm (21). The distance is zero for
two equivalent function sequences, and two is the maximum separation of normalized state
descriptions (∥f∥ = ∥g∥ = 1). The separation is

√
2 for orthogonal, normalized states. Two

states f, g are orthogonal if ⟨g|f⟩ = 0. In quantum mechanics, every element on a ray |af⟩ with
finite a ∈ C describes the same physical state: only relative phase and amplitude within linear
combinations are significant. Linearity and completeness are characteristic of Hilbert spaces.
A Hilbert space H is complete: the limit of every Cauchy sequence of elements |g

ν
⟩ ∈ H is

included. That is, if
∥g
ν
− g

n
∥ → 0

for ν, n > N → ∞, there is an element |g⟩ ∈ H such that |g⟩ = limν→∞ |gν⟩. In a separable
Hilbert space, every element is arbitrarily well-approximated by a denumerably indexed sum of
N linearly independent elements.

|f⟩ =
∑
ℓ

cℓ|eℓ⟩

with ℓ ∈ N, the natural numbers, and cℓ ∈ C. A (closed) subspace of a Hilbert space is the
linear span of a subset of elements. If there are only N linearly independent elements, the
Hilbert space or subspace is finite dimensional of dimension N , and if the number of linearly
independent elements is unbounded but includes a denumerable, dense set of elements, the
Hilbert space or subspace is denoted infinite dimensional and separable. The rigged Hilbert
spaces of interest here are separable [10].

7.2.2 Rigged Hilbert spaces

Rigged (equipped) Hilbert spaces are appropriate settings for quantum mechanics. VEV that
provide a Poincaré invariant scalar product (22) must be generalized functions: the VEV can
not be summable functions [9]. The basis function spaces P used in the constructions include
only those elements from S with Fourier transforms that vanish on the negative energy mass
shells. Three classes of functions, denoted a Gelfand triple after Israel Gelfand, describe a
rigged Hilbert space. The elements of a countably normed basis function space are denoted test
functions [9, 19, 20]. A particularly useful space of test functions are the Schwartz tempered
functions S: the tempered functions are smooth (infinitely differentiable) and exhibit rapid
decline for large values of their arguments [20]. The space of Fourier transforms of S coincides
with S. The associated class of generalized functions S ′ are the linear distributions (generalized
functions) dual to S. Linear distributions T (x) map functions to complex numbers.

T (x) ∈ S ′ : ψ(x) ∈ S 7→ T (ψ) ∈ C.

S ′ is usefully conceived as limits of functions T (x) such that

T (ψ) =

∫
dx T (x)ψ(x)
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is finite when ψ(x) ∈ S with acknowledgment that this concept includes limits that are not
summable using Lebesgue measure.p Indeed, the generalized functions dual to the functions of
bounded support can be represented

T (ψ) =
∑
n

∫
dµk(x)

dnψ(x)

dxn

with the summation over a finite number of terms using measures µk on the real numbers [20].
HS consists of S plus the Cauchy sequences convergent in a Hilbert space norm (21). As a
consequence, the Gelfand triple (S,HS ,S ′) satisfies

S ⊂ HS ⊂ S ′.

The eigenfunctions of location and momentum are not elements of HS but are elements of S ′.
Generalized eigenfunctions of a linear operator A defined in S are the generalized functions
Tλ(x) ∈ S ′ such that Tλ(Af) = λTλ(f) for any f ∈ S.

The function spaces P ⊂ S are a union of nuclear, countably normed spaces [21]. The
elements of P ⊂ S are test functions and their limits within HP constructed from the VEV in
section 3 include generalized functions.

7.2.3 The Cauchy-Schwarz-Bunyakovsky inequality

The Cauchy-Schwarz-Bunyakovsky [45] inequality is that

|⟨u|v⟩|2 ≤ ⟨u|u⟩⟨v|v⟩

for elements u, v within a complex linear vector space H. The Cauchy-Schwarz-Bunyakovsky
inequality applies if the vector space has a product ⟨u|v⟩ : u, v ∈ H 7→ ⟨u|v⟩ ∈ C with properties

⟨v|v⟩ ≥ 0

⟨u|v⟩ = ⟨v|u⟩

⟨w|αu+ βv⟩ = α⟨w|u⟩+ β⟨w|v⟩

(211)

for all u, v, w in the vector space H and α, β ∈ C. This product is designated a complex scalar
product if ⟨v|v⟩ = 0 implies v = 0, and otherwise it is a degenerate scalar product.

For any two elements in the vector space, choose one element to label as v if ⟨v|v⟩ > 0 and
label the remaining element u. This includes all cases except for both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0.
Using the Gram-Schmidt construction, the element

z = u− ⟨u|v⟩
⟨v|v⟩

v

pA perspective on the distinction between functions and generalized functions is illustrated by generalized
functions with a single point of support. Both δ(x) and δ′(x) are limits of test functions and supported solely
on the point x = 0 but δ(f) = f(0) and δ′(f) = f ′(0).
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is orthogonal to v.
⟨z|v⟩ = 0.

From the properties (211) and the construction of z,

⟨u|u⟩ = ⟨z + ⟨u|v⟩
⟨v|v⟩

v|z + ⟨u|v⟩
⟨v|v⟩

v⟩

= ⟨z|z⟩+ |⟨u|v⟩|
2

⟨v|v⟩
≥ 0.

But ⟨z|z⟩ ≥ 0 and it follows that

⟨u|u⟩ ≥ |⟨u|v⟩|
2

⟨v|v⟩
.

This demonstrates the inequality unless both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0. If both are zero, the
properties (211) provide that

⟨u+ v|u+ v⟩ = ⟨u|u⟩+ ⟨u|v⟩+ ⟨v|u⟩+ ⟨u|u⟩

= 2Re(⟨u|v⟩)

≥ 0.

Similarly, ⟨u− v|u− v⟩ ≥ 0 provides that

2Re(⟨u|v⟩) ≤ 0.

As a consequence, Re(⟨u|v⟩) = 0. Similarly, ⟨u+ iv|u+ iv⟩ ≥ 0 and ⟨u− iv|u− iv⟩ ≥ 0 provide
that Im(⟨u|v⟩) = 0. Then,

⟨u|v⟩ = 0

if both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0. Summarizing, the Cauchy-Schwarz-Bunyakovsky inequality
applies to a linear vector space with elements u, v and product ⟨u|v⟩ with properties (211).

If ⟨u|v⟩ is a scalar product and neither u nor v are the zero element, then

|⟨u|v⟩|2 = ⟨u|u⟩⟨v|v⟩

if and only if
u = αv

for a nonzero α ∈ C. For nonzero u and v and a scalar product, the equality applies if and only
if z = 0 for the z constructed above and then

u =
⟨u|v⟩
⟨v|v⟩

v.
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7.2.4 Entanglement

Quantum mechanics includes descriptions of entangled states. Descriptions of states are ele-
ments of Hilbert spaces and elements are expressible as linear combinations of other elements.
The linear expansion of states is a property of quantum physics distinct from classical physics.

A simple example of entanglement has four states: |up, up⟩, |up, down⟩, |down, up⟩, and
|down, down⟩ that span the spin states of two spin one-half bodies. The states describe the
four possibilities for the measurement of spin polarizations along a particular axis. Any linear
combination of these four states describes a state. For example,

1√
2
|up, down⟩+ 1√

2
|down, up⟩

is one possible state. For this example state, the polarizations are entangled: up for the first
body occurs only with down for the second body, and down for the first body occurs only with
up for the second body. The state of the first body is determined by the state for the second
and total spin adds to zero in any observation. However, the states are not determined, the
first body can be detected as either spin up or spin down with equal likelihoods in this example.
But, knowledge of one of the spins implies knowledge of the other due to an entanglement of
states. Entanglement of the spins is established when the particles are causally related; the
entanglement persists as the particles become acausally separated. An entanglement of bodies
need not be perfect. For example,

a |up, up, down⟩+ b |up, down, up⟩+ c |down, up, up⟩

is an example with a particular angular momentum but no perfectly entangled pair. In appendix
7.2.7, the states that result from an observation are described by linear combinations of states
of an observer entangled with the possible results of observation, |ψ⟩ =

∑
k ck |ok, sk⟩. The ok

are orthogonal descriptions of the observer’s state, and the sk describe the entangled, observed
state. In the example of Schrödinger’s cat thought experiment [50], o1 would be “observed a
live cat,” o2 would be “observed a dead cat,” s1 would be “a live cat,” s2 would be “a dead cat”
and these descriptions are entangled c1|o1, s1⟩ + c2|o2, s2⟩. An appeal to experience indicates
that |o1, s2⟩ and |o2, s1⟩ do not persist in the evolution of states.

7.2.5 Hilbert space operators

Hilbert space operators are linear maps of elements of a Hilbert space H to elements within
the Hilbert space [3, 39]. A is a Hilbert space operator if

A : |f⟩ ∈ H 7→ |Af⟩ ∈ H

for a subset of elements |f⟩ ∈ DA ⊆ H denoted the domain of A. For a bounded operator,

∥Aψ∥ ≤ ∥A∥ ∥ψ∥
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with
∥A∥ := sup(∥Aψ∥ : ∥ψ∥ ≤ 1) <∞.

A bounded operator is continuous, and the domain can be extended to the entire Hilbert
space. Unitary operators are bounded and preserve the scalar product, that is, for unitary U ,
⟨Ug|Uψ⟩ = ⟨g|ψ⟩. Illustrated in section 6, an unbounded operator is not continuous, its domain
is not a (closed) subspace, and the domain necessarily does not include the entire Hilbert space
although the domain may be dense in the Hilbert space. The adjoint operator A∗ of a Hilbert
space operator A is defined by the property that ⟨A∗h|ψ⟩ := ⟨h|Aψ⟩ for |ψ⟩ ∈ DA and |h⟩ ∈ DA∗ .
The set of h ∈ H such that there is a g ∈ H with ⟨h|Aψ⟩ = ⟨g|ψ⟩ is the domain DA∗ of A∗.
An operator A with domain DA is Hermitian if ⟨u|Av⟩ = ⟨Au|v⟩ for every u, v ∈ DA [3], a
Hermitian operator is symmetric if DA is dense in the Hilbert space, and a symmetric operator
is self-adjoint if DA = DA∗ and Au = A∗u for every u ∈ DA. These designations correspond to
Hermitian, maximal Hermitian, and hypermaximal respectively in von Neumann’s designation
[59].

7.2.6 Operators in quantum mechanics

Every closed subspace of states corresponds with a projection operator [39]. Fundamental re-
sults for Hilbert space operators include the spectral theory for rigged Hilbert space operators
[21, 24, 39]; and Stone’s theorem [24] for unitarily realized groups of Hilbert space transfor-
mations. Spectral theory displays the Hermitian operators that represent observables as limits
of linear combinations of projections weighted by representative values of the observable as-
sociated with each subspace of states. Projection operators E are bounded, self-adjoint and
idempotent, E = E∗ = E2, ∥Eψ∥ ≤ ∥ψ∥. For projections, the range RE = EH ⊂ H, a proper
subset unless E = I. From a projection E, any state |ψ⟩ ∈ H may be decomposed as an element
|Eψ⟩ within the subspace EH and an element |(I−E)ψ⟩ in the orthogonal complement of the
subspace, Riesz’s theorem.

The states of nature are described by nonnegative (⟨ψ|ρψ⟩ ≥ 0), self-adjoint (ρ = ρ∗,
Dρ = Dρ∗ dense in H), trace-class, normalized operators ρ (Trace[ρ] = 1).

Trace[ρ] :=
∑
k

⟨ek|ρek⟩ (212)

if the |ek⟩ are an orthonormal basis for the separable Hilbert space H. This basis is not unique
and every unitary operator maps a basis to a basis, |Uek⟩ = |e′

k⟩. U∗ = U−1 for a unitary
operator and unitary operators are bounded. These operators ρ are designated state density
operators [59] and generalize the vector states generally discussed above. Vector states have state
density operators ρ = E for E the projection onto a single element |ψ⟩ (RE = {|aψ⟩ : a ∈ C}).
Born’s rule includes: if a state is described by the state density operator ρ, then the likelihood
of observing a state in the subspace EH corresponding to a projection E given an initial state
described by ρ is Trace[Eρ] ≤ 1.



7 APPENDICES 141

Operators associated with observables have mean values

E[A] := Trace[Aρ] ∈ R

for Hermitian operators A and state density operators ρ. Measurements are real numbers and
the expectation values of Hermitian operators are real. If A is Hermitian, A = A∗ on the
domain of A, then for every f ∈ DA,

⟨A∗f |f⟩ = ⟨Af |f⟩

= ⟨f |Af⟩

= ⟨f |Af⟩

from the properties of scalar products and definition of the adjoint operator. Then A = A∗

implies that the expectation values ⟨f |Af⟩ are real. And, if the expectation value is real and
f ∈ DA, then

⟨f |Af⟩ = ⟨f |Af⟩

= ⟨Af |f⟩

and A = A∗ for f ∈ DA. As a consequence, observables are limited to Hermitian operators.
Significant examples of observables in nonrelativistic quantum mechanics are the Hermitian

location operators Xν . In L2,
⟨ψ|ψ⟩ =

∫
dx |ψ(x)|2

is finite at each time t with x = ct,x. The summation is over three-dimensional space, R3.
Three location operators Xν , one for each of the three spatial dimensions, are given by

Xνψ(x) := xνψ(x).

There is no bound on the values assumed by location in a Euclidean space and consequently
the location operator is an unbounded operator. xνψ(x) is not necessarily square-integrable for
square-integrable ψ(x) and as a consequence, DXν ⊂ H, a proper subset. Functions ψ(x) ∈ L2
such that xνψ(x) ∈ L2 are dense in L2 but elements of slow decline are excluded from DXν

(e.g., ψ(x) = (1 + x2)−1+δ ∈ L2 for 1≫ δ > 0 in three dimensions but xνψ(x) ̸∈ L2).

7.2.7 Observation in Hilbert spaces

The Everett-Wheeler-Graham relative state interpretation of the formalism of quantum me-
chanics [11] escapes the measurement paradoxes and ad hoc assertions of earlier understandings.
The development describes observation from the premise that the “mathematical formalism of
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quantum mechanics is sufficient as it stands” [11]. This interpretation becomes necessary to
realize relativistic quantum mechanics. Nonrelativistic concepts such as “collapse of the wave
function to an eigenfunction” are inconsistent with relativity. It would take a period of infinite
duration for the support of a typical state describing function such as an energy eigenfunc-
tion of the hydrogen atom to collapse to a single point. The nonzero support of the energy
eigenfunction is infinite: the speed of light is finite. Causality requires that the time evolution
of state describing functions is expressed with operators that satisfy the Poincaré invariance
of likelihoods. Time evolution includes measurements. With the observer as well as the ob-
served included in the quantum mechanical description, time evolution is continuous, unitary
time translation and there is no need to distinguish what interactions constitute measurement.
The relative state description is consistent with our experience as well as consistent with the
quantum mechanical description of nature.

The process of observation is fundamental in quantum mechanics: observers are not omni-
scient and the interactions that constitute measurements affect the relevant description of the
state. This process explains how the perception of nature can differ from the description.In
classical physics, the state can be observed without disruption: an observer is external to the
systems under consideration and is essentially omniscient. However, in quantum mechanics,
observation is an interaction within the quantum description: an observation entangles descrip-
tions of the possible states of an observer with the observed. Observers are also described by
quantum mechanics. There is no “macroscopic” or “classical” domain governed by distinct
physical principles. A quantum description of state that describes a composite of system under
observation and observer evolves into a linear combination that describes distinct alternative
possibilities for observation. For example, an initially localized state spreads over space with
time and a distinct state of the observer becomes entangled with each possible outcome of a
subsequent localizing interaction. It is inconsistent with our experience that there is only one
observer state: observers perceive results from among possibilities. To be included in a quantum
description and avoid the difficulties described in the Schrödinger cat and EPR measurement
paradoxes [50, 16], a distinct state of the observer must be entangled with each of the pos-
sibilities for observation. Distinct perceptions are described by distinct states. Within linear
expansions of state descriptions, “we” are described by one of the possible states. This relative
state or “many worlds” description [11] derives naturally from the quantum mechanical de-
scription of state as elements of Hilbert spaces. Although inherent to quantum mechanics, this
natural interpretation is very different from classical concepts and it took several decades after
the initial formulations of quantum mechanics for the relative state interpretation to emerge.
Hugh Everett III, John Archibald Wheeler, Neill Graham and Bryce DeWitt developed the
relative state interpretation of quantum mechanics [11]. Earlier interpretations maintained
classical descriptions for observers. Even the designation as “many worlds” betrays a classical
predisposition: many classical worlds but a unified, consistent quantum description. That state
describing functions expand in linear combinations of other state descriptions is characteristic
of Hilbert space descriptions. Consideration of the state as a superposition over many classical
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worlds, each with a state described by classical dynamical variables is an example of a persistent
classical predisposition. The relative state interpretation uses the natural quantum mechanical
description of states by functions with entanglement leading to a decomposition into relative
states labeled by the perceived results of observations.

The quantum mechanical description of observations also explains our comfort with the
classical view: often, within the precision of our perceptions, the resulting quantum mechanical
description appears to replicate a classical description. However, a richer range of descriptions
is included among the descriptions of state in quantum mechanics. A localized interaction
results in observation of a localized state; two slits in a screen followed by localizing detectors
results in observation of wave-like interference when the initial states are widely supported and
propagate toward the screen. In common instances, the perception of a quantum description
is indistinguishable from a classical description although in general, in instances such as the
uniformly illuminated double slit, a quantum description of state deviates substantially from a
classical description. Quantum mechanics supersedes classical descriptions.

The states of an observer are labeled by their perceptions. The relevant final state of the
observed is determined by the entangled observer state, the result of an interaction characterized
as an observation. The likelihoods of the various possibilities are determined by scalar products,
the relevant initial state description, the description of perceived state, and chance. Chance
determines our particular perception from among the possibilities. Perceptions such as the
track of a planet may be the overwhelming likelihood within our measurment uncertainties, or
the likelihoods may deviate substantially from any classical descriptions such as for Young’s
double slit or the energy levels of an atom. Observation results in a random selection of our
perceived state from within a linear expansion of the temporal propagation of the initial state.
If |ψ⟩ describes an initial state including the description of our history of perceptions, then
an interaction of the observer and a system will result in an expansion of the evolved state.
The states in the expansion are states labeled by the possibilities for updated histories of the
observer’s perceptions,

|U(t)ψ⟩ =
∑
θ

|EθU(t)ψ⟩ =
∑
θ

∑
k

⟨g
k,θ
|U(t)ψ⟩ |g

k,θ
⟩. (213)

The initial state |ψ⟩ jointly describes the observer and observed, and the final state expands
in entangled descriptions for each of the possible perceived results θ of the observation. En-
tanglement was introduced in appendix 7.2.1 and entanglement develops in the time evolution
of a state that initially has independent descriptions for an observer and an observed. Consis-
tently with the separability of the Hilbert space, the notation in (213) is that this summation is
denumerably indexed, our observations have finite resolution. And, the notation applies when
the orthogonal subspaces associated with projections Eθ are spanned by a basis of elements
|g
k,θ
⟩, Eθ =

∑
k |gk,θ⟩⟨gk,θ|. The |g

k,θ
⟩ jointly describe states of the observer and observed.

The orthogonal projections Eθ are onto subspaces of the Hilbert space with descriptions of ob-
servers with a history of perceptions θ. Well designed measurements entangle descriptions that
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approximate eigenfunctions for the measured quantityq with the observer’s states. Observers
often interpret the body’s state as an eigenfunction of the quantization of the corresponding
classical variable. That is, for example, in a well designed measurement, the observer inter-
prets the perception of a state dominantly supported within a small neighborhood of xo as a
point-like body located at xo.

We never observe that recorded observations change, that further observations or com-
munications change the record of past measurements or that the current state is inconsistent
with past perceptions. This experience indicates that states labeled by distinct perceptions are
orthogonal: the Hilbert space decomposes into orthogonal subspaces labeled by the distinct
histories of observations. This decomposition provides no likelihood of transitions from our
history of perceptions to a distinct history. The observation may be in error or imperfect, that
is, the actual state entangled with an observer may not be the perceived state, but distinct
histories of perceptions lie in orthogonal subspaces. Perception do not spontaneously change.
Then,

EθEϑ = 0 if θ ̸= ϑ,

and
∑

θ Eθ = I at least within an orthogonal subspace that includes the initial state |ψ⟩ and
the states |g

k,θ
⟩ of interest. Whether this summation includes all possible states in the Hilbert

space is not of issue. Our only concern is a particular subspace |EθU(t)ψ⟩ that includes our
particular history of perceptions, us.

The likelihood of adding the observation described by g
k,θ

to the history of the observer is

given by Born’s rule,

Likelihood=Trace(Eθρ) =
∑
k

|⟨g
k,θ
|U(t)ψ⟩|2

in the case of a normalized vector state ρ := |ψ⟩⟨ψ| and with Eθ the projection onto the subspace
with orthonormalized basis |g

k,θ
⟩.

The Everett-Wheeler-Graham (EWG) interpretation includes a virtual collapse of the full
description of nature to a relative state entangled with an observer’s perception. Demonstrated
in [11] and illustrated below, conditional predictions based solely on this relative state agree
with predictions using the full description of state. This agrees with our experience; we need
only know what we have observed and other possibilities are of no consequence to our ability
to predict future outcomes. Alternative “worlds” have no reality for us. The alternatives do
not affect our predictions although our experience is one from among many possibilities. This
development resolves one of the mysteries of quantum mechanics: why do we never perceive
a state in a superposition over contradictory states like a superposition of ‘live cat’ and ‘dead
cat’ in Schrödinger’s cat thought experiment [50]? Our observations entangle us with one or

qDiscussed in section 2, these eigenfunctions may be distinct from eigenfunctions of the quantizations of the
classical dynamical variable.



7 APPENDICES 145

the other state. For the Schrödinger cat thought experiment, the descriptions of final states
would be a linear combination of the g

k,θ
that describes observation of a live cat entangled with

a live cat and an undecayed isotope, and an orthogonal state g
j,ϑ

that describes observation

of a dead cat entangled with a dead cat and a decayed isotope. The formalism of quantum
mechanics is adequate to describe our experience. There is no need to augment quantum
mechanics with state collapse as well as unitary evolution. Early interpretations of quantum
mechanics included ad hoc assertions like “collapse of the wave packet” or “hidden variables”
in attempts to preserve a classical understanding. Further development has demonstrated that
our observations of nature are adequately described by quantum mechanics without such ad
hoc augmentations.

Preservation of a “classical domain” are less disruptive to established understanding but
incur the famous measurement paradoxes that illustrate the need for a quantum mechani-
cal treatment of measurement. These classical measurement paradoxes include the Einstein-
Podolsky-Rosen (EPR) [16], Schrödinger’s cat [50], and Wigner’s friend [63] paradoxes. The
EPR paradox is discussed in appendix 7.6 and illustrates that quantized, conserved quantities
can not be classically described. Schrödinger’s cat paradox illustrates that the quantum descrip-
tion can not be relegated to a microscopic world and Wigner’s friend illustrates the arbitrary
nature of assertions necessary to descriptions of measurement as “collapse of the wave packet.”
The paradoxes emerge from the adoption of contradictory concepts: a classical description for
observer with a quantum formalism for dynamics.

The EWG interpretation of quantum mechanics develops the concept of relative (entangled)
state. A Hermitian operator A corresponding to an observable has a real expectation values.
The conditional expectation is the expected value with states limited to a subspace of the
Hilbert space. A Hermitian rigged Hilbert space operator A is representedr as

A =
∑
k

akEk

with orthogonal projections Ek from a resolution of unity and ak ∈ R [21, 39]. Eigenvalues ak
are the observed values that follow for states in the subspaces EkH. The conditional expectation
value of the observable A conditioned upon an observer’s perception θ is

Eθ[A] :=
E[EθAEθ]
E[Eθ]

=
Trace(EθAEθρ)
Trace(Eθρ)

(214)

with ρ the nonnegative, unit trace, state density operator [59] discussed in appendix 7.2.6. The
Eθ are the orthogonal projections (213) that project onto subspaces of states that include the

rAppropriate limits of these summations are included.
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observer perceptions labeled by history θ entangled with states of the observed. The Eθ project
onto composites of observed plus observer states. Two example constructions of composite
states are discussed below.

From the idempotence of projections and transpositional invariance of the trace (212) [26],
Trace(AB)=Trace(BA),

Trace(Eθρ) = Trace(EθρEθ)

with EθρEθ the projection of the state density operator into the subspace labeled by θ. The
relative state density operator [11], relative to the observer history labeled θ, is

ρθ :=
EθρEθ
E[Eθ]

(215)

normalized to unit trace. The relative state density operators are orthogonal, ρθρϑ = 0 if
θ ̸= ϑ, and remain orthogonal with time evolution implemented by unitary time translation,
U(t)∗U(t) = 1. In terms of this relative state density operator, the conditional expectation is

Eθ[A] = Trace(Aρθ).

It was argued on physical grounds that states labeled by different histories of perceptions
were orthogonal since it is our experience that there is no likelihood of a change to history. As
a consequence, there will be a resolution of unity into projection operators Eθ labeled by the
perception histories θ. ∑

θ

Eθ = 1

with the θ labeling the possible histories of perceptions, plus one additional orthogonal subspace
of all remaining state descriptions. Distinguish this latter projection as E0. Decomposition of
the Hilbert space into orthogonal complements follows from the orthogonality of states with
distinct histories, and Riesz’s theorem on orthogonal subspaces in a Hilbert space [47].

If the operator A corresponding to an observable quantity is in the commutant of the Eθ
from (214), that is, if

[A,Eθ] = 0

for each Eθ except possibly with an exception for E0, then a mixture of the relative state density
operators ρθ is equivalent to the state density operator ρ. The resolution of unity

∑
Eθ = 1,

the idempotence of projections, commutation of A and the Eθ, the transposition invariance of
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the trace (212) and the definition of relative state results in the equivalence.

E[A] = Trace(Aρ)

=
∑
θ

Trace(EθAρ)

=
∑
θ

Trace(E2
θAρ)

=
∑
θ

Trace(EθAEθρ)

=
∑
θ

Trace(AEθρEθ)

=
∑
θ

Trace(Aρθ)E[Eθ]

=
∑
θ

Eθ[A]E[Eθ].

Then, using the definition of relative state density operator (215), if an operator A is in the
commutant of the Eθ, the mixture of relative states,

ρeq =
∑
θ

E[Eθ] ρ
θ

has the same observable properties as the complete state description ρ.

Trace(Aρ) = Trace(Aρeq). (216)

Each of the relative state density operators ρθ provide the expectation values conditioned on
a history of observer perceptions θ. The subspace E0H is of no interest. This equivalence
of a mixture of the mutually orthogonal relative state density operators with the complete
description of the state ρ explains why the quantum mechanical description of state is not
in contradiction with a classical concept for an observer. Each term in a mixture evolves
independently in time: knowledge of the entire state description is not required to propagate
the relative states forward in time. Conditional expectations are equivalent to distinguishing
one particular history, our history, as a classical observer. All our future observations evolve
from our current relative state description ρθ. We need not know or account for the “other
branches” to predict the future that is relevant to us, the future conditioned on our history. This
suggests the “collapse of the wave function” upon observation described in early developments
of quantum mechanics [59], but there is no physical distinction between a virtual and actual
collapse of the state description ρ to ρθ upon observation. An actual collapse would result in
a classical description of the observer but the universality of likelihood conservation, that is, a
unitary implementation of time translation, is preserved if the collapse is considered as virtual.
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The equivalence remains with forward time translation.

U(t)ρU(t)∗ =
∑
θ

E[Eθ]U(t)ρθ U(t)∗.

The first example with system observables A and projections Eθ that commute is a tensor
product of two Hilbert spaces. The states of the observed are elements of a Hilbert space H1

and the states of the observer are elements of a Hilbert space H2. The Hilbert space of interest
is the tensor product, H = H1 ⊗ H2. A second example of this commutation is developed
in appendix 7.2.8 and is based on the strong cluster decomposition property of the VEV. The
second example describes a body that is initially distantly spatially separated from the observer
and the commutation is with arbitrarily great likelihood, but inexact since there are no state
descriptions of bounded support within HP . In both cases, the observables A commute with
the projections Eθ.

A tensor product is the composition of Hilbert spaces H1 and H2 into a composite

H := H1 ⊗H2.

From descriptions of the body ψ, g ∈ H1 with scalar product ⟨ψ|g⟩1, and states of the observer
described u, v ∈ H2 with scalar product ⟨u|v⟩2, the tensor product composite Hilbert space H
has states labeled ψ ⊗ u, g ⊗ v with scalar product

⟨ψ ⊗ u|g ⊗ v⟩ := ⟨ψ|g⟩1 ⟨u|v⟩2.

If 1ek and
2ek are orthonormal bases for separable H1 and H2 respectively, then an orthonormal

basis for the composite Hilbert space has labels

ekj =
1ek ⊗ 2ej

and dim(H) = dim(H1) × dim(H2). Operators defined in H1 ⊗H2 include extensions of the
operators from H1 and H2. Hilbert space operators in the tensor product include C := A⊗B,

⟨ψ ⊗ u|C g ⊗ v⟩ := ⟨ψ|Ag⟩1 ⟨u|Bv⟩2.

Then any operators A ⊗ I commute with any I ⊗ B. If H1 includes the descriptions of the
observed and H2 includes the descriptions of the observer, then this example satisfies the
assertions above in discussion of the physical equivalence of the mixture of relative states ρθ

to ρ. For an observation to occur, the time translation U(t) from (213) must couple the
constituent Hilbert spaces H1 and H2. Tensor products demonstrate that the assumed concept
of observables for a body in the commutant of the projections onto observer states is realizable.
B(H1) ⊗ I and I ⊗ B(H2) demonstrate that there are commuting sets of operators of interest.
B(H) is the set of all bounded operators for the Hilbert space H. That the tensor product
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composition suffices to define a Hilbert space is discussed further in appendix 7.2.9. A simple
example illustrating entanglement and the commutation of observables with projections onto
the observer states is in appendix 7.17.

The equivalence of ρeq and ρ provides that there is no need for a collapse of state description
upon measurement. The relative state interpretation is the natural understanding of quantum
mechanics, bizarre images summoned by “many worlds” notwithstanding.

7.2.8 Localized observables, separation and independence

The intuitive notion that separation implies independence provides a second example of Her-
mitian operators A associated with the observed that (nearly) commute with projections Eθ
onto states that include a particular history of observer perceptions. Cluster decomposition
(28) provides that scalar products factor when the support of the functions that describe the
observed and observer are greatly space-like separated. This is suggestive of a tensor product
decomposition of Hilbert spaces.

This intuitive, satisfying property that separation impels independence is enabled by con-
sideration of localized observations. Observables essentially limited to bounded, isolated spatial
volumes associate observables with bodies. And, if the observed is greatly spatially isolated
from the observer, then these observables (arbitrarily nearly) commute with projections onto
states that describe the observer. The approximate independence is that

0 ≈ ∥[Eθ, A]∥ ≪ ∥A∥

with A a Hermitian operator representing the localized observable and for projections ∥Eθ∥ = 1.
This commutation is the property used to develop the equivalence of the mixture of relative
states with a general state descriptions in the EWG development of observation discussed in
appendix 7.2.7. The commutation is only approximate because the supports of state describing
functions are not of bounded support: the functions within P are anti-local. In these instances,
the equivalence (216) of the mixture of relative states ρθ with ρ is to arbitrarily great likelihood.

In the constructions, the cluster decomposition condition (28) provides that the truncated
functions defined by cluster expansion (72) are connected functions,

CWk,n−k =
TWk,n−k.

The vanishing of connected functions CWk,n−k as the supports of arguments are greatly space-
like separated, and satisfaction of cluster decomposition (28) provides that

Wn,m((y)n+m) =Wj,ℓ((x)P )Wn−j,m−ℓ((x)P ′)

as λ → ∞ if yik = xk for ik ∈ P and yik = xk + (0, λa) for ik ∈ P ′ = {1, n + m}/P ,
the set complement of the j + ℓ-element set of integers P from {1, n + m}, with the evident
embellishment of the (x)n notation.
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The demonstration is limited to a selected instance. The observed is an elementary particle
described by a one-argument function ψ(x). In the final, post measurement phase, the support
of ψ(x) is distantly spatially isolated from the support of the description of the observer. xo
is the time dependent location of the observed. A finite spherical volume centered on xo is
designated by Vxo . Vxo includes all but a negligible amount of the support of ψ(x). Assert that
there is a choice of eigenfunctions {eℓ(x)} such that: the support of every eℓ(x) outside of Vxo

is uniformly negligible; and the Hermitian operator Â associated with the observable is

|Âf⟩ := (0, A1f(x1), . . . ,
n∑
j=1

Ajfn((x)n), . . .) (217)

with

Ajfn((x)n) :=
∑
ℓ

aℓeℓ(xj)

∫
dy1dy2 W2(y1, y2)eℓ(y1)fn(x1, . . . xj−1, y2, xj+1, . . . xn).

W2 is the two-point function, and j ∈ {1, n}. The aℓ are the eigenvalues of the one-argument
subspace observable A associated with the eigenfunctions eℓ(x).

A =
∑
ℓ

aℓ|eℓ⟩⟨eℓ|

and the state describing function expands in a linear combination of eigenvectors

ψ(x) ≈
∑
ℓ

⟨eℓ|ψ⟩ eℓ(x). (218)

The functions eℓ(x) are orthonormal,

⟨eℓ|eℓ′⟩ = δℓ,ℓ′ . (219)

The single argument operator Aj is A applied to the jth argument in the n-argument subspace.
A is asserted to be bounded and essentially localized within the volume Vxo . A is designated
essentially localized within Vxo if cluster decomposition (28) implies that

⟨f |Âf⟩ → 0 (220)

if the dominant support of a localized state |f⟩ is arbitrarily greatly space-like separated from
Vxo . These properties restrict the class of observables. For example, the linear harmonic
oscillator energy eigenfunctions are localized but not uniformly negligible outside of a bounded
volume: the greater the energy, the broader the support. The volume Vxo is selected so that
the contribution of any ψ(x) or eℓ(x) of interest beyond Vxo is arbitrarily negligible. Examples
of localized, one argument observables include location with the eℓ(x) ≈ δ(x−xℓ) and xℓ ∈ Vxo .
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The second set of operators of interest are projections Eθ onto states that include particular
descriptions of the observer. The initial description of the observer is selected to be (nearly)
independent of the description of the observed: initially the observer and observed are unentan-
gled with distantly space-like separated supports. Eθ projects a joint, final, post-observation
description of observer and observed (213) onto a description with the observer described by a
particular new perception added to the history θ. The final state of the evolved observer state
is labeled h0 and the final observer states with the evolved perceptions are labeled hθ. These
descriptions of state do not include description of the observed. The supports of both the h0
and hθ within Vxo are arbitrarily negligible. Initial and final are long before and long after
the interaction that constitutes an observation. The projections onto the final observer states
labeled hθ are

Eθ := orthogonal projection onto the union of the ranges of Eg
ℓθ

(221)

defined from projections

|Eg
ℓθ
f⟩ :=

⟨g
ℓθ
|f⟩

⟨g
ℓθ
|g
ℓθ
⟩
|g
ℓθ
⟩

onto the product states defined
|g
ℓθ
⟩ := |eℓ × hθ⟩ (222)

with eℓ := (0, eℓ(x1), 0, . . .) the eigenfunctions of the observable.
Estimates for the commutator of the observed’s essentially localized observable A with

the projections Eθ onto particular observer states follow from the initial independence, the
final distant spatial separation, and cluster decomposition (28). Demonstrated immediately
below, the definitions for the observables (217), (219), (218), and (220), projections (221), and
joint observer-observed states (222) in the rigged Hilbert spaces of relativistic quantum physics
provide that

|Eθ ψ × h0⟩ ≈ ⟨hθ|h0⟩ |ψ × hθ⟩

|Â ψ × h0⟩ ≈ |(Aψ)× h0⟩.
(223)

The projection onto particular observer states does not affect the description of the observed.
The likelihood of a particular final state of the observed is determined by the likelihood that
the evolved h0 has a nonzero projection onto hθ. The likelihoods of observed values for the
localized observable Â is determined only by the description of the observed.

The demonstration of (223) follows from the scalar product (22).

⟨g
ℓθ
|ψ × h0⟩ = ⟨eℓ × hθ|ψ × h0⟩

≈ ⟨eℓ|ψ⟩ ⟨hθ|h0⟩
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as a consequence of the distant space-like final separation of supports and cluster decomposition
(28) of the VEV into connected functions. The separation of the volume Vxo from the final
support of the observer also provides that

⟨g
ℓθ
|g
ℓθ
⟩ = ⟨eℓ × hθ|eℓ × hθ⟩

≈ ⟨eℓ|eℓ⟩⟨hθ|hθ⟩

= 1

with the normalization ∥hθ∥ = 1. Similarly, ⟨g
ℓθ
|g
µθ
⟩ ≈ 0 if ℓ ̸= µ. This approximate orthogo-

nality then provides that

Eθ ≈
∑
ℓ

Eg
ℓθ

(224)

from (221). As a consequence,

|Eθψ × h0⟩ ≈
∑
ℓ

|Eg
ℓθ
ψ × h0⟩

=
∑
ℓ

⟨g
ℓθ
|ψ × h0⟩
⟨g
ℓθ
|g
ℓθ
⟩
|g
ℓθ
⟩

=
∑
ℓ

⟨eℓ × hθ|ψ × h0⟩ |eℓ × hθ⟩

≈
∑
ℓ

⟨eℓ|ψ⟩ ⟨hθ|h0⟩ |eℓ × hθ⟩

= ⟨hθ|h0⟩ |ψ × hθ⟩

from substitution of the expansion (218) of the observed state. Eθ approximates a projection
operator with the desired property of projecting onto the observer state of interest independently
of the descriptions of the observed.

The form (217) of the local observable Â provides

Â ψ × h0 = (0, Aψ(x1)fo,0, . . .
n∑
j=1

Ajψ(x1)fo,n−1(x2, . . . xn), . . .)

≈ (0, Aψ(x1)fo,0, . . . (Aψ(x1))fo,n−1(x2, . . . xn), . . .)

= (Aψ)× h0

as a consequence of the distant spatial separations of the support of the eℓ(x) and h0, and
cluster decomposition. This completes the demonstration of (223).
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From (217), the commutators of the Â and Eθ follow from

|ÂEθ ψ × h0⟩ ≈ ⟨hθ|h0⟩ |Â ψ × hθ⟩

≈ ⟨hθ|h0⟩ |(Aψ)× hθ⟩

and

|EθÂ ψ × h0⟩ ≈ |Eθ (Aψ)× h0⟩

≈ ⟨hθ|h0⟩ |(Aψ)× hθ⟩.

Then,
[Eθ, Â] ≈ 0

for states that describe an observed and observer that are initially unentangled and distantly
space-like separated both initially and finally.

This development is not general but illustrates that separation and a lack of entanglement
provide independence. This demonstration is an alternative to the tensor product example.
This result is enabled within relativistic quantum physics by consideration of observations that
are essentially localized, the likely association of locations with the observed, and satisfaction
of cluster decomposition (28) in A.6.

7.2.9 Tensor products of linear vector spaces

Discussed in [59] and appendix 7.2.7, a tensor product is the composition of linear vector spaces
H1 and H2 into a composite

H := H1 ⊗H2.

From elements described g1, g2 ∈ H1 with degenerate scalar product ⟨g1|g2⟩1, and elements
described f1, f2 ∈ H2 with degenerate scalar product ⟨f1|f2⟩2, the tensor product composite
Hilbert space H includes states labeled g1 ⊗ f1, g2 ⊗ f2 with degenerate scalar product

⟨g1 ⊗ f1|g2 ⊗ f2⟩ := ⟨g1|g2⟩1 ⟨f1|f2⟩2. (225)

In this appendix, the sufficiency of this assignment to specify a degenerate scalar product on the
complete tensor product space is addressed. (225) is evidently a degenerate scalar product of
product elements g1⊗f1, g2⊗f2, but does this degenerate scalar product extend to all elements
of H?

First it is established that the Cauchy-Schwarz-Bunyakovsky inequality applies for all prod-
uct states, and then this result is used to demonstrate that the degenerate scalar product applies
to linear combinations of product states. Then, if H is defined as the completion of the linear
span of product functions, then the degenerate scalar product applies to H.
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The Cauchy-Schwarz-Bunyakovsky inequality applies for all product states.

|⟨g1 ⊗ f1|g2 ⊗ f2⟩|2 = |⟨g1|g2⟩1|2|⟨f1|f2⟩2|2

≤ ⟨g1|g1⟩1⟨g2|g2⟩1⟨f1|f1⟩2⟨f2|f2⟩2

= ⟨g1 ⊗ f1|g1 ⊗ f1⟩⟨g2 ⊗ f2|g2 ⊗ f2⟩

from (225) and the Cauchy-Schwarz-Bunyakovsky inequality in the constituent linear vector
spaces. As a consequence, (225) extends to linear combinations of product functions.

|⟨u+ v|u+ v⟩|2 = ⟨u|u⟩+ ⟨v|v⟩+ ⟨u|v⟩+ ⟨v|u⟩

= ⟨u|u⟩+ ⟨v|v⟩+ 2ℜe⟨u|v⟩

≥ ⟨u|u⟩+ ⟨v|v⟩ − 2
√
⟨u|u⟩⟨v|v⟩

=
(√
⟨u|u⟩ −

√
⟨v|v⟩

)2
≥ 0

if the Cauchy-Schwarz-Bunyakovsky inequality applies to the elements u, v. It applies for prod-
uct elements g ⊗ f and then nonnegativity applies to linear combinations of two product ele-
ments. Then, if the sum of two product elements has a nonnegative scalar product, then the
sum of three also does by a similar argument. Hence, all linear combinations of product ele-
ments are nonnegative. The degenerate scalar product extends to an complete tensor product
space if the space is defined as follows.

A denumerable basis of elements enm is defined from products of basis elements for the
constituent Hilbert spaces

enm := 1en ⊗ 2em

with 1en a basis for the separable H1 and
2em a basis for the separable H2. Then (225) provides

that
⟨enm|ekℓ⟩ = δn,kδm,ℓ

with Kronecker deltas. The enm are a basis for H1 ⊗H2 defined as the completion H of all
linear combinations of product states g ⊗ f in the norm from (225). Nonnegativity extends to
all convergent limits.

⟨u|u⟩ = ⟨
∑
n,m

anmenm|
∑
k,ℓ

akℓekℓ⟩ =
∑
n,m

∑
k,ℓ

anmakℓδn.kδm,ℓ =
∑
n,m

|anm|2

that is manifestly nonnegative.
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7.3 Translations, location operators and relativistically invariant localized
states

Hermitian Hilbert space operators that correspond to location are discussed in this appendix.
Discussed below, multiplication of the Fourier transforms f̃n((p)n) of functions by pν gen-

erates translations in location and multiplication of the functions fn((x)n) by xν generates
translations in momenta. Translation invariance of the scalar product and Stone’s theorem
leads to the conclusion that momenta are densely defined Hermitian operators in nonrelativis-
tic physics. However, in relativistic physics, the scalar product is not invariant to translations
in momenta. In a nonrelativistic development, the L2 scalar product is invariant to translations
in momenta but in a relativistic development, the universality of the speed of light dictates a
Lorentz invariant scalar product. As a consequence, multiplication by xν does not generate a
unitarily implemented symmetry in a relativistic development. If multiplication by xν were a
densely defined Hermitian operator, then translations in momentum would be unitarily imple-
mented and the scalar product would be momentum translation invariant. Multiplication of
functions by xν can not correspond to the location operator in relativistic physics since it can-
not be Hermitian, and as developed in appendix 7.2.6, only Hermitian operators are associated
with observables. It is demonstrated in section 6 that the operator Xν that quantizes xν is not
Hermitian. Despite its commutation with the momentum operators, the “position” operators
Xν are not Hermitian for the relativistic scalar product (22).

From the properties (19) of the Fourier transform, translation of a function corresponds
to multiplication of the Fourier transform by e−ipa. Recall that px = p0ct − k · x, a Lorentz
invariant. For both free fields and the constructions, the Hamiltonian is H = ℏcp0 [32]. From
the scalar product (22), translation of the function to x−a corresponds to translation of a field
by x+ a. Fourier transforms correspond

e−ipaψ̃(p)↔ ψ(x− a)

and then for sufficiently small ∥a∥, Taylor theorem polynomial approximation of the exponential
function and ψ(x) provide that

(1− ipa)ψ̃(p)↔ ψ(x)− a · dψ(x)
dx

.

Then the operator Pν that corresponds to multiplication of the Fourier transform by pν is

Pν = −iℏgνν
d

dxν
.

The Minkowski signature g is (20). With

U(a)ψ(x) := ψ(x− a),
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the translation invariance of the scalar product provides that translations U(a) are unitary and
the generators,

U(a) = exp(−iap),

are the energy-momentum operators Pν = ℏpν . From Stone’s theorem, the energy-momentum
operators are densely defined and Hermitian. Pν is evidenly unbounded. Similarly, multi-
plication of functions by xν generates translations in energy-momenta. Fourier transforms
correspond

eiqxψ(x)↔ ψ̃(p− q)

and then for sufficiently small ∥q∥,

(1 + iqx)ψ(x)↔ ψ̃(p)− q · dψ̃(p)
dp

.

Then the operator Xν that corresponds to multiplication of a function by xν is

Xν = igνν
d

dpν
.

With
T (q)ψ̃(p) := ψ̃(p− q),

if the scalar product were energy-momentum translation invariant then the

T (q) = exp(iqX)

would be unitary and its Hermitian generators would be the location operators Xν . The cor-
respondence of Xν and Pν with location and momentum respectively is established in the
interpretation of the support of the arguments of functions as spacetime coordinates and of
the Fourier transforms as energy-momenta in units of wavenumber. Considering only spatial
coordinates, ν = 1, 2, 3,

Xν = xν ,−i
d

dpν
and Pν = iℏ

d

dxν
, ℏpν (226)

that apply to functions or the Fourier transforms of functions, respectively. Signs are determined
by the convention for the Fourier transform (17). The Xν and Pν given by (226) canonically
commute. But the properties of Xν and Pν as Hilbert space operators depend on the Hilbert
space realizations, that is, depend on the scalar product. In the Hilbert space L2 appropriate
for nonrelativistic physics [51], the scalar product is both spacetime and energy-momentum
translation invariant and Xν and Pν are both densely defined Hermitian operators. For a
relativistic scalar product, only the Pν are Hermitian since in relativistic physics, there is only
translation invariance of the scalar product. Demonstrated in section 6, multiplication by xν
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is not realized as a Hermitian Hilbert space operator for the relativistically invariant scalar
products of elementary particle states.

The identification of Xν as the location operator and Pν as the momentum operator in
nonrelativistic physics results in the Born-Heisenberg-Jordan relation for their commutator.

[Xν , Pν ] = −iℏ.

This commutation implies the Heisenberg uncertainty relation as discussed in appendix 7.7
and a Baker–Campbell–Hausdorff identity implies that similarity transforms of the location
operators translate the eigenvalues.

e−iaνPν/ℏXνe
iaνPν/ℏ = Xν +

iaν
ℏ

[Xν , Pν ]

= Xν + aν .
(227)

As a consequence, there is a simultaneous eigenfunction of the Xν for every a ∈ R3 given a
function that is in the union of the null spaces of the Xν , ν = 1, 2, 3. From Xνψ0(x) = 0,

ψa(x) := eia1P1/ℏeia2P2/ℏeia3P3/ℏψ0(x) satisfies Xνψa(x) = aνψa(x).

This result followed solely from the Born-Heisenberg-Jordan relation and there are many other
differential operators X̂ν that also canonically commute with the momentum operators Pν .
These differential operators X̂ν also have eigenfunctions associated with every location in R3.

From Clairaut’s theorem, the operations

X̂ν = −iu(p) d
dpν

u−1(p) (228)

mutually commute as long as u(p) is twice continuously differentiable. The X̂ν canonically
commute with the energy-momentum operators,

[X̂ν , Pµ] = −iℏδν,µ

with ν, µ = 1, 2, 3. Then, there is a class of differential operators X̂ν parametrized by twice
continuously differentiable functions u(p) that satisfy the Born-Heisenberg-Jordan commutation
relations [X̂ν , Pν ] = −iℏ (233) and that mutually commute, [Pν , Pµ] = [X̂ν , X̂µ] = 0. The
operations potentially correspond with observables only if they are Hermitian in the scalar
product of the Hilbert space realization of interest.

The location operators X̂ν are determined by the Hilbert space realization of quantum me-
chanics. Three distinct sets of location operators are developed in this appendix: the elevation
of xν that applies in a canonical quantization of nonrelativistic physics (226); an X̂ν for the
relativistic free field realized in Fock space; and an X̂ν for the relativistic constructions based
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upon the basis function spaces P from section 3.7. The eigenfunctions of these operators are la-
beled by locations a ∈ R3, are orthogonal for distinct locations as a consequence of Hermiticity
[3], and are dominantly supported near each location a although they are not of point support
in the relativistic cases. In relativistic physics, the lack of negative energy support and Lorentz
covariance of the states implies that Dirac delta functions are not generalized eigenfunctions of
a Hermitian operator within the Hilbert space.

The evident correspondence of particles with state descriptions provides that location op-
erators apply for descriptions of free fields [30, 60]. A free field decomposes into canonically
commuting particle creation and annihilation operators; every state can be represented as a
linear combination of particle creation operators applied to the vacuum state. When there
is interaction, as discussed in section 3.1, these location operators apply to states in the one
particle subspace and more generally provide a location for indeterminant bodies. If high or-
der connected functions contribute significantly, then states are not necessarily interpretable as
classical particles and the location of a specific particle as an observable is not evident. The
extension of a single particle operator to multiple particle states (16) is a second quantization
that follows (217) for the constructions when interaction is lacking. The discussion of section
3.1 illustrates that general state descriptions are not associated with determined numbers nor
types of particles. A particle interpretation is a classically inspired perception of the quantum
description of state.

In (228), u(p) = 1 is the Hermitian location operator Xν in the Hilbert space L2 applicable
in nonrelativistic physics. The eigenfunctions of the Xν are Dirac delta functions and ideally
associated with classical locations. More generally, in nonrelativistic limits, ∥ℏp∥ ≪ mc, X̂ν ≈
Xν if u(p) ≈ u(mc/ℏ, 0, 0, 0). However, as discussed in section 2, eigenfunctions for a Hermitian
operator are orthogonal in the Hilbert space scalar product. The u(p) in (228) suffice to select
Hermitian operators X̂ν in realizations of relativistic physics [42].

The Hermitian operator associated with location is in the form (232) derived from the
association of classical bodies with states that are dominantly supported within small isolated
volumes. From the discussion of Heisenberg’s uncertainty principle in appendix 7.7, product
states with factors

f̃(p) :=
(p0 + ω)φ̃(p)√

2ω

have scalar products that coincide with the L2 scalar product of the φ̃(p) in the one-particle
subspace or more generally for states that are well-described by classical particles. Using the
translates (227), and a selection of Dirac delta sequences

ψ̃0(p) = ω1/2e−L2(p−w)2 → ω1/2

with L → 0 for φ(x) result in the relativistically invariant localized functions of [42]. For the
relativistic free field construction based upon the basis function spaces P [30], the Hermitian
operator that corresponds to location has the additional constraint that the eigenfunctions must
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not be supported on negative energy mass shells.

ψ̃0(p) =
(p0 + ω)√

2ω
e−L2(p−w)2 → (p0 + ω)√

2ω
.

That is, X̂ν : P 7→ P is required. States labeled by distinct locations a ̸= a′ become orthogonal
as L→ 0 and then there is a (generalized) eigenfunction associated with every location a ∈ R3.
In both cases, the functions ψ̃a(p) are appropriate test functions that label elements of the
constructed Hilbert space when L is finite and nonnegative.

If u(p) = ω1/2 or u(p) = (p0 + ω)/ω1/2 with ω from (8), then the resulting X̂ν is Hermitian
in the one particle subspace for the relativistic scalar product. From (38),

⟨f1|X̂νg1⟩ =

∫
dp

2ω
δ(p0 − ω)f̃1(p)

(
−iω1/2 d

dpν
ω−1/2g̃1(p)

)
= −i

∫
dp

2
ω−1/2f̃1(ω,p)

d

dpν
ω−1/2g̃1(ω,p)

= i

∫
dp

2

(
d

dpν
ω−1/2f̃1(ω,p)

)
ω−1/2g̃1(ω,p)

= ⟨X̂νf1|g1⟩

(229)

from integration by parts.
An alternative method to associate X̂ν with location is to set X̂ν equal to a Hermitian

operator derived from Xν .

X̂ν :=
1

2
(Xν +X∗

ν )

with the adjoint operators X∗
ν defined for the free field scalar product (229). Then

X̂ν f̃1(p) = − i
2

(
d

dpν
+ ω

d

dpν
ω−1

)
f̃1(p)

= −ir
(
f̃ ′
1(p)−

ω′

2ω
f̃1(p)

)
= −iω1/2 d

dpν
ω−1/2f̃1(p)

from ⟨X∗
νf1|g1⟩ := ⟨f1|Xνg1⟩, (229), integration by parts, and with the prime designating

differentiation with respect to pν . However, this method is not general. In this case of location,
the adjoint shares a dense domain with Xν . The adjoint of the field Φ(f)∗ from (26) is generally

undefined for the constructions and Φ̂(f) = 1
2(Φ(f) + Φ(f)∗) is then not Hermitian.
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The relativistic location eigenfunctions, the relativistically invariant localized functions, are
orthogonal. The two-point function for a free field (38) is expressed using the Fourier transforms,

W2(ψ
∗g) =

∫
dp

2ω
ψ̃(ω,p) g̃(ω,p)

and then the relativistically invariant localized functions centered on distinct locations a and
a′ are orthogonal.

W2(ψ
∗
aψa′) = 1

2

∫
dp e−ip·(a′−a)

= 1
2(2π)

3 δ(a− a′).

To characterize the spacetime support of ψ̃a(p), [42] uses a transform with a Lorentz co-
variant measure supported solely on the mass shell,

fa(x) := 2λ2c

∫
dp

(2π)3/2
θ(E)δ

(
p2 − λ−2

c

)
eipxψ̃a(p)

= λ2c

∫
dp

(2π)3/2
1

ω
eiωct−ip·xψ̃a(p).

In the limit L→ 0 and for t = 0, ψ̃a(p) =
√
λcω e

ip·a and

fa(x) = F (r/λc)

with
F (r/λc) = cF (λc/r)

5/4H
(1)
5/4(ir/λc), (230)

a Hankel function H
(1)
5/4(z), dimensionless real constant cF , and r2 := (x − a)2 [1, 42]. The

dominant support of F (r/λc) is near r = 0 due to the divergence as r−5/2 at the origin and
a rapid decline bounded by exp(−r/λc) at large r. λc is the reduced Compton wavelength.
The relativistically invariant localized functions fa(x) do not equal zero within any spatial
neighborhood.

By the characterizations developed in section 2, states such as relativistically invariant
localized states would typically be perceived as localized states despite their lack of bounded
support. The relativistically invariant localized states are essentially localized within a volume
of radius proportional to the Compton wavelength of the body, 3.0× 10−13 m for an electron.

7.4 Location, a prototype correspondence in relativistic quantum physics

Location contradicts a canonical quantization in relativistic physics. Location is a classical dy-
namical variable represented by a spatial argument of a state describing function in a canonical
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quantization. Elevation of location to quantum mechanical operator is not Hermitian in rela-
tivistic physics [42, 64]. Location demonstrates that a canonical quantization is not generally
available. One significant distinction between relativistic and nonrelativistic physics is that the
scalar product is invariant to velocity shifts in a nonrelativistic development but a universal
and finite speed of light precludes velocity shift invariance in relativistic developments. The
elevation of x is Hermitian in nonrelativistic but not relativistic physics as a consequence.s

The elevation of location is the Hermitian location operator in nonrelativistic physics, but a
Hermitian elevation of location is precluded by relativity even for free fields, [42, 64] and section
6. Yet, clearly, location remains an observable.

The quantization of location, also designated the elevation of location, is the Hilbert space
operator with eigenfunctions that are Dirac delta functions over space. Every point in R3 is
an eigenvalue of the quantization of location and the eigenfunctions are generalized eigenfunc-
tions. The number of orthogonal generalized eigenfunctions of location is uncountable and these
eigenfunctions can therefore not be elements of a separable rigged Hilbert space, section 6. The
point support of a Dirac delta function corresponds with the classical concept of location as
a point in R3. The Hermitian Hilbert space operator that corresponds to location is distinct
from the canonical quantization of location. Quantizations are not necessarily Hermitian. From
[13, 59] and appendix 7.2.6, to correspond to a classical dynamical variable, that is, to have a
real expected value for all state descriptions, a Hilbert space operator must be Hermitian. How-
ever, the relativistic Hilbert space scalar product is not compatible with eigenfunctions that are
delta functions. Eigenfunctions of a Hermitian Hilbert space operator with distinct eigenvalues
are necessarily orthogonal in the Hilbert space scalar product [3]. A relativistic scalar product
has a Källén-Lehmann form two-point function to achieve the physically necessary properties
of Poincaré invariance and positive energies. Dirac delta functions are not orthogonal in this
scalar product.

⟨f(x0)δ(x− y1)|f(x0)δ(x− y2)⟩ ≠ 0 when y1 ̸= y2.

Hence, Dirac delta functions over space can not be the eigenfunctions of a Hermitian operator
in relativistic physics [3, 42, 64].

With the revised, approximate and conditional quantum-classical correspondence, there are
Hermitian operators X̂ν that correspond to location in relativistic physics. The eigenfunctions
of these operators are Theodore Newton and Eugene Wigner’s relativistically invariant local-
ized functions [42]. In the momentum domain, the relativistically invariant localized functions
ψx(x1) [42] are

ψ̃x(p) = (2ω)
1
2 e−ipx (231)

sAs a consequence of ⟨eiq·xf(x)|eiq·xg(x)⟩ = ⟨f(x)|g(x)⟩ for the L2 scalar product applicable in nonrelativistic
physics, the generator of velocity shifts, the quantization of x, is Hermitian. The scalar product in relativistic
physics uses a Källén-Lehmann form two-point function [9] and then eiq·x is not Hermitian.
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labeled by spacetime points x ∈ R4. These functions are generalized eigenfunctions of a Hermi-
tian operator defined in the Hilbert space for a relativistic free field. There is an eigenfunction
with eigenvalue x for every location x ∈ R3. For nonrelativistic momenta, ψ̃x(p) ≈ (2m)

1
2 e−ipx

and in this sense the relativistically invariant localized functions approximate Dirac delta func-
tions. For the constructions, one-argument functions always describe a single elementary parti-
cle and the X̂ν are location operators for that elementary particle in the one-particle subspace.
In subspaces with a greater number of arguments and with relativistic momenta in a multiple
species construction, the X̂ν remain location operators but the location is not associated with
a determined number nor species of particles. These functions are also discussed in appendix
7.3.

Hermitian location operators X̂ν are described by spectral theory for rigged Hilbert space
operators (theorem 1, appendix to section 4 [21], lemma 5.6.7 [39], and chapters 7-10 [24]).
Restricted to the one-argument subspace within HP , the three Hermitian location operators
are

X̂ν :=

∫
R3

dx xνEx. (232)

Ex ∼ |ψx⟩⟨ψx| projects one-argument functions to the relativistically invariant localized func-
tions located near x at time x0 = ct (231). ν = 1, 2, 3, x = x0,x with x ∈ R3 and xν are the
three Cartesian components of x. The relativistically invariant localized functions are mutually
orthogonal, ⟨ψy1 |ψy2⟩ = 0 if y1 ̸= y2 and y10 = y20. The relativistically invariant localized

functions are generalized eigenfunctions of the X̂ν .

X̂νψx(x1) = xνψx(x1),

and

Qχ :=

∫
χ
dx Ex

are projection operators that provide a resolution of unity. dx is Lebesgue measure on R3,
and the χ refer to measurable volumes within R3. From the orthogonality of the ψx(x1),
ExEx′ = 0 if x0 = x′

0 and x ̸= x′. The Qχ are projections (idempotent, self-adjoint operators)t

in the one particle subspace of HP . The functions ψx(x1) are essentially localized but not
strictly localized. The ranges of the projections Qχ are subspaces of positive energy, Poincaré
covariant, essentially localized states and orthogonal projection operators are Birkhoff and von
Neumann’s experimental propositions [6, 59].

tExEx′ = 0 if x ̸= x′ and t = t′, and then QχQχ′ = 0 if χ∩χ′ = ∅ for spatial volumes χ, χ′ within a constant
time plane. The functions ψx(x1) and ψx′(x1) are orthogonal at coincident times. However, evaluated at distinct
times t ̸= t′, ExEx′ ̸= 0. If there were Q∆ such that Q∆Q∆′ = 0 for projections onto spacetime volumes
∆,∆′ ⊂ R4 with ∆ ∩ ∆′ = ∅ and space-like separated, then those Q∆ = 0 [64]. There are no such projections.
The volumes with QχQχ′ = 0 are insufficient to conclude from Bogolubov’s edge of the wedge theorem that
Qχ = 0.
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There are many first order linear differential operators that canonically commute with the
Hermitian momentum operators Pν . Examples are constructed in appendix 7.3 and include:
the Hermitian quantization Xν of x applicable in L2 Hilbert spaces of nonrelativistic physics;
the Hermitian operator X̂ν that has Newton and Wigner’s relativistically invariant localized
functions [42] as eigenfunctions and applies in Fock space developments of the relativistic free
field; and the Hermitian operator that applies for the section 3 construction of a Hilbert space
based on P.

For free fields, the Hermitian location operator X̂ν in (232) that applies in the one-particle
subspace extends to multiple argument states by second quantization. If the interaction of states
is significant then multiple-argument components of states are not necessarily interpretable as
determined numbers or species of particles, section 3.1. The number and species of particles and
even whether the state is perceived as particles is not evident unless interaction is negligible for
the state of interest. That is, a free field location operator necessarily applies approximately only
for states that are well-represented by classical particles. Free field and nonrelativistic states
are readily interpreted as consisting of particular numbers and species of particle. Otherwise,
the dominant supports of multiple argument functions correspond to likely locations but the
numbers and species of particles at those locations is indeterminant.

Relativistic location illustrates a key difference between the less constrained, alternative
development and a canonical quantization: the distinction between an elevation of a classi-
cal dynamical variable and a Hermitian operator that corresponds to the classical dynamical
variable. For location, three quantities are distinguished: x, Xν , and X̂ν . The vector x ∈ R3

specifies a classical location and a point in the domain of the state describing functions. The Xν

for ν = 1, 2, 3 are elevations of the three components of x, operators with Dirac delta functions
as generalized eigenfunctions. And, the X̂ν are Hermitian Hilbert space operators with gener-
alized eigenfunctions that are the relativistically invariant localized functions of Newton and
Wigner [42]. These generalized eigenfunctions describe the natural generalization of localized
states in a relativistic development. The “elevation of c-number to q-number” conjecture is
that the Xν should equal X̂ν . The contradiction to the Hermiticity of Xν in relativistic physics,
included in section 6, is a “localization problem” of RQFT. The relativistically invariant local-
ized functions conditionally approximate Dirac delta functions. That a small neighborhood of
a location x includes all perceptions of location to arbitrarily great likelihood suffices physically
as the description of localized. Location in relativistic physics is also discussed in [42, 64],
section 3.1, and appendix 7.3. The “localization problem” as well as the lack of nontrivial real-
izations in relativistic quantum physics are overcome by adopting more appropriate relativistic
quantum-classical correspondences.

7.5 Inconsistency of the classical description with nature

Quantum mechanics is a striking change from classical descriptions. Several competing schools
of thought persist on whether quantum mechanical descriptions actually depict nature. The
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difficulty for many is that quantum mechanics forces us to abandon well-developed classical
intuition.

The considerations listed below require a general abandonment of classical concepts. The
conflict of classical concepts with nature is illustrated by many considerations including:

1. Planck’s calculation of the spectrum of black body radiation

2. the heat capacity of solids

3. the photoelectric effect

4. Stokes fluorescence and Compton scattering

5. Gibb’s paradox

6. the creation and annihilation of particles

7. interference patterns in a Michelson interferometer at very low “single quantum at a time”
light intensity

8. discrete energy bands in the radiation spectra from atoms

9. the Einstein-Podolsky-Rosen paradox for conserved quantities such as angular momentum,
discussed in appendix 7.6.

Taken together, these considerations do not rectify with a classical world view. Each is a
motivation for quantum mechanics, and together with principles of simplicity and universality,
a quantum mechanical description for nature is indicated.

For consistency with observations, Max Planck’s calculation for the spectrum of black body
radiation included that the energy in electromagnetic radiation is quantized in discrete particle-
like amounts with an energy E proportional to photon frequency ν, E = hν. h became known
as Planck’s constant. Planck’s revelation and Albert Einstein’s insight that the photoelectric
effect is also explained by a quantized photon energy produced agreement with observation.
The observed photoelectric effect is strong evidence for the interpretation of electromagnetic
radiation as photons. In the photoelectric effect, electrons are not emitted from a surface until
the light frequency is sufficient, that is, until the light quanta include sufficient energy that
the dominant reaction, interaction of an electron with a single photon, results in an electron
with sufficient energy to escape the surface. This observation is (nearly) independent of the
amplitude of the incident radiation. The exception is nonlinear optics, if the electron absorbs
the energy of multiple photons. These results contradict the classical description of electromag-
netism as waves and energy as a freely specified real parameter. If the illumination is a wave,
we should anticipate that once the amplitude of the wave was sufficient that electrons would
escape the surface. In his identification of the quantized energy E = hν of an electromag-
netic field, Einstein was also motivated by the observed heat capacity of solids, in particular,
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contradictions to the equipartition of energy in classical statistical mechanics, and Stokes fluo-
rescence [54], that the frequency of a photon emitted by a body was less than the illuminating
frequency. (Stokes fluorescence has since been supplemented with observations of anti-Stokes
radiation, when vibrational modes of an emitter contribute to the energy of the re-emitted
photon.) Together with Joseph John Thomson’s observations of the electron, Robert Milliken
and Harvey Fletcher’s measurement of a discrete electric charge, and Jean Perrin’s observations
and Albert Einstein’s description of Brownian motion, these findings provided motivation for
the description of matter as a composition of atoms.

The indistinguishability of bodies of the same mass, spin, polarization and charges naturally
resolves Gibb’s paradox. Gibb’s paradox arises if entropy is not an extensive quantity. In
statistical physics, an extensive quantity is proportional to the amount of substance, that is, for
an extensive entropy, twice the volume of gas should have twice the entropy. Were entropy not
extensive, then Gibbs paradox is a violation of the second law of thermodynamics, that entropy
of isolated systems does not decrease. Other solutions have been suggested to resolve Gibb’s
paradox, but the indistinguishability of bodies is a natural resolution consistent with the Bose-
Einstein or Fermi-Dirac statistics of similarly described bodies in quantum mechanics. Note
that this indistinguishability is in contradiction to the classical concept that the trajectories of
individual bodies can be distinguished and followed.

The creation and annihilation of particles is another contradiction to the classical concept
of continuous trajectories. In these cases, trajectories disappear and trajectories with distinct
descriptions appear. Such transformations of identifiable bodies are not described by classical
physics. With creation and annihilation, one cannot follow the trajectory of a single identifiable
entity, nor generally even determine the number of bodies in a relativistic state description.

A Michelson interferometer consists of two light paths split and later recombined using a
half-silvered mirror, two reflecting mirrors, and an optical path matching slab of clear glass.
An interference pattern of light and dark intensity rings is visible on detectors at an end of
the optical path, for example, on photographic film. This pattern persists even as the intensity
of the light is lowered. From the model of light quanta established in the photoelectric effect
and Planck’s calculation of black body radiation spectra, it follows that the illumination can
be reduced to less than a single photon at a time within the interferometer on average. This
establishes that each photon interferes with itself, and since the arms of the interferometer are
separated and can be of unequal length, that the photon takes both paths. This contradicts
a classical description of the photon as a classical particle with a definite trajectory. The
interference pattern is consistent with the classical concept of electromagnetism as a wave,
but that description is contradicted by the photoelectric effect. The interferometer is a strong
argument for the reality of the quantum description of state. It is difficult to understand how at
low intensities the interference pattern can be responsive to changes in arm path length without
a physical presence in each of the two separate arms for each photon.

Discrete line spectra observed in emissions of light, for example, from a gas of hydrogen
or sodium atoms, contradict that energy is a real number parameter, an initial condition for
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classical equations of motion. Line spectra contradict that any in a range of real numbers
can provide the initial conditions that result in a hydrogen atom. There is no mechanism
within classical descriptions that results in the observed atomic spectra (nor the observed heat
capacities of solids at low temperatures). One of the predictions of nonrelativistic quantum
mechanics is line spectra, and observations of the Lamb shift of hydrogen atom energy levels is
one of the most precise tests in physics. The Lamb shift is correctly estimated by the Feynman
series rules for quantum electrodynamics.

Quantum mechanics resolves many observed flaws of classical descriptions, from extensive
entropy to conservation laws for quantized quantities to discrete atomic spectra to the con-
sistency of observed interference patterns with particle-like descriptions of waves. Despite all
this, classical descriptions of physics continue to be used as the underpinnings of quantum
physics. The concept of a continuous evolution of distinguishable bodies traveling trajecto-
ries, the descriptions of Newtonian physics and Einstein’s geometrodynamics, are evidently
useful approximations to quantum physics but in limited instances. The concept that quantum
dynamics is the “quantization” of these classical dynamic descriptions rests on expedience, ex-
perience with nonrelativistic quantum mechanics, and successful but limited phenomenology.
Any correspondence of quantum with classical need only occur in appropriate instances, and
canonical quantization is an unjustified extrapolation otherwise.

7.6 The Einstein-Podolsky-Rosen paradox

The Einstein-Podolsky-Rosen (EPR) [16] paradox and confirmation of Bell’s inequalities [5]
illustrate that a classical description is inconsistent with nature. The quantum mechanical de-
scription of nature has been described as “bizarre” but, this description reflects that quantum
mechanics demands rejection of long established classical concepts. The EPR paradox [16]
illustrates that the quantum mechanical description of nature contradicts classical concepts.
Einstein, Podolsky and Rosen develop the argument that quantum mechanics must be incom-
plete because the quantum description conflicts with a classical concept of state. Of course,
the alternative is that the classical description is inconsistent with nature. To develop the
EPR paradox, it is observed that spin angular momentum is quantized with the same discrete
values on any axis of observation. The paradox arises if a spin zero particle decays into two
spin one-half particles that subsequently fly apart. Sufficiently separated, we can determine
the spin state of an arbitrarily distant particle by observing the paired particle: the distant
spin is the one that paired with the near spin conserves angular momentum. The paradox is
that we determine the spin of the non-causally related distant particle differently as determined
by our selection of measurement axis. If the distant particle is classically described, then it
has a determined spin unaffected by our observation of the nearby particle. The resolution
to the conflict is entanglement, a concept in quantum mechanics that is not supported in a
classical description. That is, the resolution of the EPR paradox is not a contradiction to quan-
tum mechanics but a contradiction to classical concepts, to the classical description of state.
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Entanglement is natural in the Hilbert space description of multiple particle states [49]. The
paradox is resolved by the realization that a classical description is not consistent with nature.
Although Einstein motivated quantum mechanics with studies of the photoelectric effect and
the heat capacity of solids [54], he is perhaps most celebrated for his understanding of time and
motion described in special relativity and geometrodynamical gravity. Einstein’s derivation of
gravity relies on classical description of nature. Expressed in the EPR paradox, Einstein did
not embrace implications of quantum mechanics. I presume that Einstein was persuaded by
his immensely successful insights into time and motion using classical concepts that are in con-
flict with quantum mechanics. Also, more consistent perspectives on quantum mechanics [11]
developed later. The principle of equivalence, that acceleration is equivalent to a gravitational
force, relies on the classical description of a body characterized by a trajectory. In a quantum
mechanical description, the characterization of the velocity of a body deteriorates with en-
hancements in location accuracy: both location and velocity are never known with a precision
that exceeds the Heisenberg uncertainty bound. We cannot arbitrarily precisely associate the
acceleration of a body with its locations.u It is a great irony that just as problematic aspects
of Newtonian mechanics were resolved with dynamical, relativistic time and the equivalence of
acceleration with gravitation, atomic physics necessitated the new mechanics that supersedes
classical developments.

Flaws in classical physics such as a non-causal radiation reaction force in classical electrody-
namics [28] can be tolerated since classical descriptions only approximate the more fundamental,
and causal, quantum descriptions. Indicated in Feynman’s quote in section 4, it could be antic-
ipated that the transition from the well-established and successful practice of classical physics
to quantum mechanics would be slow. Even though it was observation that necessitated the
development of the new mechanics, adoption of quantum mechanics is inhibited by the es-
tablished reliance on classical concepts. Quantum mechanics is the more comprehensive and
unified model. Although the classical perspective is an accurate approximation of the quantum
description in our common experience, the classical perspective is contradicted by nature.

7.7 Heisenberg uncertainty

One of the great insights in the development of quantum mechanics is that location and momen-
tum are not independently specified descriptions of bodies. Both location and momenta derive
from a state describing function ψ(x). The supports of functions ψ(x) are associated with the
likelihoods of locations and the supports of the Fourier transforms ψ̃(p) are associated with the

uAlthough for typical nonrelativistic Hamiltonians acceleration and location commute, [Xν , [H,Pν ]] = 0,
an estimate for acceleration from a sequence of localizing measurements fails due to the lack of a trajectory
precisely associated with a quantum description. Each observation conveying location knowledge contributes
velocity uncertainty. There are no classical state descriptions included in quantum mechanics. For many states,
particularly state descriptions with high energies and overlapping supports, the principle of equivalence does not
even approximate the evolution for the state describing functions.
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likelihoods of momenta. Likelihoods are provided by Born’s rule from the Hilbert space scalar
product. Mean values of location and momentum are independently specified but variances are
constrained as described by the Heisenberg uncertainty principle. The Heisenberg uncertainty
principle follows from the quantum mechanical description of states. If the scalar product is L2,
appropriate in nonrelativistic physics, then the location operator corresponds to the Hermitian
operator realized by multiplication of the function ψ(x) by the value of an argument xν and
the momentum operator corresponds to the Hermitian operator that is the similarly quantized
multiplication of ψ̃(p) by pν in the momentum domain. Using the Fourier transform relations
(19) and linearity, in L2 location corresponds to −iℏd/dpν and momentum to iℏd/dxν . This is
discussed further in appendix 7.3. If at a time t the support of ψ(x) is dominantly supported
in the neighborhood of a point y(t), then

⟨ψ|Xνψ⟩ :=
∫
dx xν |ψ(x)|2 ≈ yν(t)

∫
dx |ψ(x)|2 = yν(t)

for a normalized ψ(x). y(t) is any suitable representative of the neighborhood of support. From
Parseval’s equality (18), the definition of Fourier transform (17) and implied identities, if at a
time t the support of the Fourier transform ψ̃(p, t) is dominantly supported near a momentum
q(t) = ℏp(t), then with ν = 1, 2, 3,

⟨ψ|Pνψ⟩ := ℏ
∫
dp pν |ψ̃(p, t)|2 = iℏ

∫
dx ψ(x, t)

dψ(x, t)

dxν
≈ qν(t).

There is no knowledge of momentum for a location eigenfunction, and no knowledge of
location for a momentum eigenfunction. Are there classical particle-like selections for functions
that describe quantum mechanical states? Here, a nearly classical state is one with both location
and velocity known precisely. For finite masses, the time derivative of location is velocity v and
in the nonrelativistic approximation p ≈ mv. There is no bound on the precision of knowledge of
the mass. Are there states that approximate both location and momentum arbitrarily well? The
result is that there is an optimal accuracy that can be simultaneously obtained for knowledge
of location and momentum, and a choice of functions that provides the optimal simultaneous
knowledge. This result is the Heisenberg uncertainty principle. In quantum mechanics, not
only is dynamics no longer described by a smooth trajectory specified by an initial location
and velocity, but we cannot know both the location and the time derivative of the location
of a body sufficiently well to specify a trajectory. That is, our description of state does not
support the concept of Newtonian mechanics. The Heisenberg uncertainty principle is a lower
bound on the breadth of the supports in location and momentum in a quantum mechanical
description. We can approximate the location and time derivative of location for a body, and this
approximation becomes better the heavier the body, but the concept of Newtonian mechanics
is not supported by the quantum description of state. Also, in quantum mechanics, we cannot
necessarily identify a particular body to propagate forward in time. Similarly described bodies
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are indistinguishable and cannot be labeled to identify a trajectory except while a single body is
sufficiently isolated from other bodies to reliably identify the body. While isolated, a dominant
volume in the support of a function that describes a state can be identified and followed with
a high likelihood until it approaches other similar bodies. At this point, its identity becomes
lost in ambiguity.

The Heisenberg uncertainty principle is derived in ordinary, nonrelativistic quantum me-
chanics. It is a result that follows from the L2 scalar product applicable in nonrelativistic
physics. In L2, three location operators Xν = xν and three momentum operators Pν = iℏd/dxν ,
one for each spatial dimension, are self-adjoint in L2 and satisfy the Born-Heisenberg-Jordan
relation

[Xν , Pν ] = −iℏ, (233)

a canonical commutation relation (CCR). For an arbitrary state |ψ⟩ labeled by a function
ψ(x) ∈ L2 in the intersection of the domains of Xν and Pν (with convergent |⟨ψ|Xνψ⟩| and
|⟨ψ|Pνψ⟩|), define operators

A := Xν − ⟨ψ|Xνψ⟩, and B := Pν − ⟨ψ|Pνψ⟩.

ν = 1, 2 or 3 and the intersection of the domains includes states labeled by the Schwartz
tempered functions that are dense in L2. From the commutation of Xν and Pν it follows
that [A,B] = −iℏ and that A,B are mean zero for the state |ψ⟩. From the interpretation of
⟨ψ|Aψ⟩ as the mean value of the quantity associated with the operator A for normalized states
⟨ψ|ψ⟩ = 1, identify variances of location and momenta as

σ2x = ⟨ψ|A2ψ⟩, and σ2p = ⟨ψ|B2ψ⟩.

Self-adjointness of A and B follows from the self-adjointness of Xν and Pν on L2. Self-
adjointness and the Cauchy-Schwarz-Bunyakovsky inequality then provide that

|⟨ψ|ABψ⟩|2 = |⟨Aψ|Bψ⟩|2 ≤ ⟨Aψ|Aψ⟩ ⟨Bψ|Bψ⟩ = ⟨ψ|A2ψ⟩ ⟨ψ|B2ψ⟩ = σ2xσ
2
p.

The lower bound, equality, is achieved if |Aψ⟩ = c|Bψ⟩ for a complex constant c. From the
definition of commutator, linearity of scalar products, and the property of scalar products that
⟨u|v⟩ = ⟨v|u⟩, identify that

⟨ψ|[A,B]ψ⟩ = ⟨ψ|ABψ⟩ − ⟨ψ|BAψ⟩ = ⟨ψ|ABψ⟩ − ⟨ABψ|ψ⟩ = 2iℑm(⟨ψ|ABψ⟩),

twice the imaginary part. The imaginary part of z has a magnitude bounded by the magnitude
of z. This bound and the commutation relation for A and B result in that

|⟨ψ|[A,B]ψ⟩|2 = |iℏ⟨ψ|ψ⟩|2 = ℏ2 = |2iℑm(⟨ψ|ABψ⟩)|2 ≤ 4|⟨ψ|ABψ⟩|2 ≤ 4σ2xσ
2
p.

This is Heisenberg’s uncertainty principle. For states in L2,

σxσp ≥ ℏ/2,
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a lower limit on the geometric mean of the variances of location and momentum. This limits
the simultaneous accuracy of location and momentum descriptions in each dimension ν. The
lower bound is achieved if ⟨ψ|ABψ⟩ is imaginary and |Aψ⟩ = c|Bψ⟩ for c ∈ C. The labels ψ(x)
with x ∈ R3 for the states that meet both lower bounds are Gaussian functions (98),

ψ(x) =
e−(x−xo)2/(4L2)+ipox/ℏ

(2πL2)
1
4

.

These Gaussian functions satisfy

⟨ψ|ABψ⟩ = i

∫
R3

dx
(x− xo)2

2L2
|ψ(x)|2

that is imaginary and

Aψ(x) = (x− xo)ψ(x) = cBψ(x) = c(−iℏdψ(x)
dx

− poψ(x)) = c
iℏ(x− xo)

2L2
ψ(x)

for real xo := ⟨ψ|Xνψ⟩ and po := ⟨ψ|Pνψ⟩, c = 2L2/(iℏ) and ⟨ψ|ψ⟩ = 1. The parameter L = σx
and σp = ℏ/(2L). This is the function shape in each dimension. The spatial function that
labels a minimum uncertainty state is the product of three factors, one for each spatial dimen-
sion. These Gaussian functions are denoted minimum packets and are the states most classical
particle-like states in the sense that the geometric mean of the uncertainties in simultaneous
knowledge of the location and momentum of the state is minimized.

The Heisenberg uncertainty principle applies in relativistic physics with some revision. In a
relativistic development, the operators Xν (|Xνψ⟩ := |xνψ⟩) are not self-adjoint and therefore
are not the quantization of location. As a consequence, the development above of the Heisenberg
uncertainty relation does not apply for operator pairs Xν , Pν . Nevertheless, the Heisenberg
uncertainty principle applies when classical approximations to the relativistic physics apply,
and with Xν replaced by the Hermitian X̂ν := −iℏω1/2d/dpνω

−1/2, the relativistic, single
body location operator [42]. Classical particle approximations apply when states are described
by functions with isolated (116) concentrations of support well-represented by a single location
(113) and momentum (115). The eigenfunctions of X̂ν are the relativistically invariant localized
functions. If the X̂ν is used in the development of the Heisenberg uncertainty relation, then the
minimum uncertainty packets are not Gaussian functions. The relativistic minimum uncertainty
packets are normalized inverse Fourier transforms of

ψ̃(p) = ω1/2e−σ2
o(p−w)2eip·xo/ℏ.

If the state description consists of sufficiently isolated concentrations in the support of each
argument and these supports are well-represented by single locations and momenta, then the
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state can be represented by classical particles and the Heisenberg uncertainty principle applies
for functions ψ(x) used to define functions in HP .

φ̃(p) :=
(p0 + ω)ψ̃(p)√

2ω
∈ HP . (234)

Due to cluster decomposition, the contributions to scalar products of the high order connected
functions are negligible when a state consists solely of widely spatially isolated bodies. In these
cases, the Wk,n−k are well-approximated by the free field contribution (45) to the VEV. From
(45), the significant contributions to scalar products (22) for product states fn,

fn((x)n) =
n∏
j=1

φj(xj) ∈ HP

and functions φj with Fourier transforms of the form (234) consists of sums of products of
factors W2(φ

∗
jφℓ). Substitution results in

W2(φ
∗
jφℓ) =

∫
dp1dp2 W̃2(p1, p2)φ̃j(−p1)φ̃ℓ(p2)

=

∫
dp1dp2 δ(p1 + p2)

δ(p10 + ω1)√
2ω1

δ(p20 − ω2)√
2ω2

φ̃j(−p1)φ̃ℓ(p2)

=

∫
dp2 ψ̃j(p2)ψ̃ℓ(p2)

=

∫
dx ψj(x)ψℓ(x).

(235)

This is the L2 scalar product of the ψj(x). The Heisenberg uncertainty bound applies to the
breadths of location and momentum support of W2(φ

∗
jφj) with ψj(x) substituted for φj(x).

Gaussian functions provide an explicit example of an expansion of a state description as a
linear combination of more localized Gaussian elements in the Hilbert space. The identity

e
− x2

4L2
0 =

√
1

ϵ2(1−ϵ2)4L2
0π

∫
ds e

− s2

4(1−ϵ2)L2
0 e

− (x−s)2

4ϵ2L2
0

with 0 < ϵ ≪ 1 is an expansion of the more broadly supported Gaussian function as a linear
combination of arbitrarily narrower Gaussian functions centered on s. This expansion is in one
dimension. The likelihood of a transition from the normalized state characterized by

ψ(x) = Nψe
− x2

4L2
0

to the more localized, normalized state characterized by

gs(x) = Nse
− (x−s)2

4ϵ2L2
0
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is

|⟨gs|ψ⟩|2 =
2ϵ

1 + ϵ2
e

− s2

4(1+ϵ2)L2
0

with ⟨ψ|ψ⟩ = ⟨gs|gs⟩ = 1. As anticipated, the likelihood of transition to a function centered on
s declines rapidly the farther s is from the center of support at x = 0. And, the likelihood of
transition to a function of width ϵσ declines slowly with reductions in relative function spread.

7.8 Realizations of Q2,2

This appendix illustrates the arrays Qk,n−k((p)n)(κ)n
from (56) in section 3.4.3. The arrays

determine n ≥ 4, n-argument connected VEV functions that describe interaction in the con-
structed realizations of RQP. The illustrated example is n = 4, k = 2, and any number of field
components Nc. The matrices h(p) in (57) are therefore Nc×Nc and two factors of h(p) appear
in each term of the expansion for Q2,2((p)4)(κ)4 . The full set of illustrations assumes that the
array h(p) includes both boson and fermion components.

Keeping only the detail necessary to identify terms, terms are distinguished by transpositions
of the arguments pj , κj of the four fields in a 4-point VEV, j = 1, 2, 3, 4. Transposition of
arguments corresponds with commutation of the field operators within VEV. Selection of κj ∈
{1, Nc} determines a type, boson or fermion, and an associated mass mκj for each j. Argument
type of the jth argument follows from the values of κj using (42) in section 3.3. There are four
energy-momenta (p)4 and N4

c possible selections for (κ)4.
The constructions begin with expansions in the constituents B(p) and Υ(p) of h(p). The

summation a, b ∈ J2,2 in (59) with a ∈ {1, 2} and b ∈ {3, 4}results in

exp(
∑

a,b∈J2,2

ρaρbhκaκb
) := exp(ρ1ρ2B(p1+αop2)κ1κ2) exp(ρ3ρ4B(αop3+p4)κ3κ4)

× exp(ρ2ρ3Υ(−p2+p3)κ2κ3 + ρ1ρ4Υ(−p1+p4)κ1κ4).
(236)

Notation is from section 3.4.3.
In the abbreviated notation (48), i1i2i3i4 designates one of the permutations πj of the four

sets of field arguments (p, κ)4 and σ(i1i2i3i4) := σ(πj , (κ)4) designates the associated sign. The
associated sign is identified below (49) in section 3.4.2. The reference order Ao is 2134. Similarly
to the abbreviated notation (48), designate

Bi(ab) := B(pa+αopb)κaκb

Bo(ab) := B(αopa+pb)κaκb

Υ(ab) := Υ(−pa+pb)κaκb
.

(237)
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In this abbreviated notation and neglecting the factors of δ(p2j − λ2cj), the construction of
Q2,2((p)4)(κ)4 follows from the split signed symmetization (50) of q2,2(1234). From (56) and
(236),

q2,2(1234) := q2,2((p)4)(κ)4

=
d

dρ1

d

dρ2

d

dρ3

d

dρ4
exp(

∑
a,b∈J2,2

ρaρbhκaκb
)

= Bi(12)Bo(34) + Υ(23)Υ(14)

(238)

after evaluation with all ρj = 0. The split signed symmetrization (50) produces

Q2,2((p)4)(κ)4 =
∑
π2

σ(π2, (κ)n)

(∑
π1

σ(π1, (κ)n) q2,2(π2(π1({1, n})))

)
=
∑
π2

σ(π2, (κ)n)
(
σ(1234)q2,2(π2(1234)) + σ(2134)q2,2(π2(2134))

)
= σ(1234)

(
σ(1234)q2,2(1234) + σ(2134)q2,2(2134)

)
+σ(1243)

(
σ(1234)q2,2(1243) + σ(2134)q2,2(2143)

)
.

(239)

Five cases of interest follow from the index types of selections for the (κ)4. The five cases
have species types: 1,2,3,4=boson; 1,2,3,4=fermion; 1,2=boson and 3,4=fermion; 1,2=fermion
and 3,4=boson; and 1,3=boson and 2,4=fermion. Other cases are zero or related by split
signed symmetry. These cases associate with boson scattering, fermion scattering, fermion pair
production from bosons, fermion pair annihilation to bosons, and fermion-boson scattering,
respectively.

Boson scattering: 1,2,3,4=boson. All signs σ(i1i2i3i4) are positive.

Q2,2((p)4)(κ)4 = q2,2(1234) + q2,2(2134) + q2,2(1243) + q2,2(2143)

= Bi(12)Bo(34) + Υ(23)Υ(14) +Bi(21)Bo(34) + Υ(13)Υ(24)

+Bi(12)Bo(43) + Υ(24)Υ(13) +Bi(21)Bo(43) + Υ(14)Υ(23)

= (Bi(12) +Bi(21))(Bo(34) +Bo(43)) + 2Υ(13)Υ(24) + 2Υ(23)Υ(14).

(240)

Fermion scattering: 1,2,3,4=fermion. Each transposition from the reference order results in
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a negative sign. σ(1234) = σ(2143) = −1.

Q2,2((p)4)(κ)4 = − q2,2(1234) + q2,2(2134) + q2,2(1243)− q2,2(2143)

= −Bi(12)Bo(34)−Υ(23)Υ(14) +Bi(21)Bo(34) + Υ(13)Υ(24)

+Bi(12)Bo(43) + Υ(24)Υ(13)−Bi(21)Bo(43)−Υ(14)Υ(23)

= (Bi(21)−Bi(12))(Bo(34)−Bo(43))− 2Υ(23)Υ(14) + 2Υ(13)Υ(24).

(241)

Fermion pair production from bosons: 1,2=boson and 3,4=fermion. Only σ(2143) = −1
and mixed type h(p) are zero.

Q2,2((p)4)(κ)4 = q2,2(1234) + q2,2(2134)− q2,2(1243)− q2,2(2143)

= Bi(12)Bo(34) +Bi(21)Bo(34)−Bi(12)Bo(43)−Bi(21)Bo(43)

= (Bi(21) +Bi(12))(Bo(34)−Bo(43)).

(242)

Fermion pair annihilation to bosons: 1,2=fermion and 3,4=boson. Only σ(1234) = −1 and
mixed type h(p) are zero.

Q2,2((p)4)(κ)4 = −q2,2(1234) + q2,2(2134)− q2,2(1243) + q2,2(2143)

= −Bi(12)Bo(34) +Bi(21)Bo(34)−Bi(12)Bo(43) +Bi(21)Bo(43)

= (Bi(21)−Bi(12))(Bo(34) +Bo(43)).

(243)

Boson-fermion scattering: 1,4=boson and 2,3=fermion. All signs are positive and mixed
type h(p) are zero.

Q2,2((p)4)(κ)4 = q2,2(1234) + q2,2(2134) + q2,2(1243) + q2,2(2143)

= Υ(23)Υ(14) + Υ(14)Υ(23)

= 2Υ(23)Υ(14).

(244)

The expressions for Q2,2((p)4)(κ)4 each include a factor

4∏
j=1

δ(p2j − λ−2
cj )

that constrains energy-momentum support to mass shells. These factors are neglected in the
abbreviated notation.
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With a transposition of indices, Bi(ab) := B(pa + αopb)κaκb
becomes

B(αopa + pb)
T =

∫
dµB(s) e

is(αopa+pb)M(s)T

̸= B(pa + αopb).

if αo ̸= 1 despite the symmetry, M(s) = M(s)T in the example realization of M(s) in sec-
tion 3.3.2. If the fermion component of B were symmetric with transposition of fermion type
arguments, Bν(ab) = Bν(ba) for ν = i, o, then fermion pair production and fermion pair annihi-
lation amplitudes would vanish. The fermion component of B is symmetric with transposition
of fermion type arguments if αo = 1 for the example realization of a fermion in section 3.3.2.

7.9 Feynman-Dyson series and the constructions

A renormalized perturbative series for scattering amplitudes [23, 51, 60] is discussed in this
appendix to contrast Feynman (also referred to as Feynman-Dyson, or Dyson) series scattering
amplitudes with the explicit scattering amplitudes from the constructions in section 3. In
this appendix, the comparison of quantum mechanical constructions with Feynman series is
illustrated for the example of one neutral scalar field Φ(x), Nc = 1. Feynman series apply only
to scattering [8], to infinite interval transition amplitudes.

From section 3.9, the constructed scattering amplitudes are infinite interval limits of more
general state transition amplitudes. Appropriate states are interpretable as classical bodies
described by momenta using plane wave limits of localized states. For states (2) described by
product functions of point support at times λj and with momentum support centered on qj ,

fn((x)n) =
n∏
j=1

ℓ(xj ;λj ,qj)

[32, 34, 36], a transition from m to n freely propagating particles is described by the LSZ
(Lehmann-Symanzik-Zimmermann) expressions for scattering amplitudes [9],

Sn.m = lim
λ→∞

⟨U(λ)ℓ(λ,qm+1) . . . ℓ(λ,qm+n)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qm)⟩

= lim
λ→∞

⟨U(λ)Φ(ℓ(λ,qm+1)) . . .Φ(ℓ(λ,qm+n))Ω|U(−λ)Φ(ℓ(−λ,q1)) . . .Φ(ℓ(−λ,qm))Ω⟩
(245)

and

Sn.m = lim
λ→∞

⟨U(λ)Φ(ℓ(λ,qm+n))U(λ)−1 . . . U(λ)Ω|U(−λ)Φ(ℓ(−λ,q1))U(−λ)−1 . . . U(−λ)Ω⟩

with U(λ) the unitary time translation operator, and applying the definition of field (2) with
the notation of section 3.1.3. The state describing functions ℓ(xj ;λj ,qj) are described in (97)
in section 3.9.

ℓ̃(pj ;λj ,qj) := eipj0λj (ωj + pj0)f̃(pj − qj)
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with λj ∈ R, qj ∈ R3 and f̃(p) ∈ S(R3). ℓ(xj ;λ,qj) is within the completion HP of the P(R4)
described in section 3.7, Ω designates the vacuum and the VEV are constructed in section
3. S(R3) includes functions with Fourier transforms that are delta sequences with supports
concentrated near the momenta qj . A convenient choice for function f̃(p) is the Gaussian
function (98), a point-wise nonnegative delta sequence. The cluster decomposition axiom A.6
provides that the Gaussian functions ℓ(xj ;λ,qj) are described at large times as free particles if
the functions ℓ(xj ;λ,qj) are translated to center the spatial support on free particle trajectories
with distinct momenta qj .

The LSZ scattering amplitudes (245) are VEV of products of temporal translations of fields
Φ(ℓ(t,q)). From section 3.9 and with λj := λ, temporal translations of these fields are inde-
pendent of time.

U(t)Φ(ℓ(t,q))U(t)−1 = Φ(ℓ(0,q))

due to the limitation of the spectral support of VEV from section 3 to mass shells and the
selection of compensating phases in ℓ(xj ;λj ,qj).

The RQFT [7, 23, 51, 60] rule for calculation of plane wave scattering amplitudes is to
evaluate the generalized functions

Sn,m((p)n+m) := ⟨Φ̃+
o (pn) . . . Φ̃

+
o (p1)Ωo|UD(t,−t)Φ̃+

o (pn+1) . . . Φ̃
+
o (pn+m)Ωo⟩ (246)

for t =∞. These scattering amplitudes are expanded in free field VEV. Free field operators are
distinguished in this appendix by the notation Φo(x). The Dyson operator UD(t1, t2) is provided
below in (251). Creation components Φ+

o (x) of free fields are introduced in section 3.3. The
scattering amplitudes Sn,m((p)n+m) apply the Fourier transform of generalized functions [19],

Φ+
o (f) = Φ̃+

o (f̃). (247)

Introduced in section 3.3, the free field

Φo := Φ+
o +Φ−

o

has a cyclic vacuum state Ωo and an annihilation component Φ−
o Ωo = 0. From section 3.8, the

operator adjoint of Φ+
o is

Φ+
o (f)

∗ = Φ−
o (f

∗) (248)

using the dual (11) for functions on the right-hand side and the Hilbert space operator adjoint
on the left-hand side. The adjoint is

Φ̃+
o (p)

∗ = Φ̃−
o (−p)

from the Fourier transform (247) and ∗-dual (11). For f ∈ P(R4), Φo(f) = Φ+
o (f) as a

consequence of the support constraint on functions in P. From section 3.3, the commutators
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of free field creation Φ+
o and annihilation Φ−

o components provide that

[Φ−
o (x), Φ̃

+
o (p)] =

δ+(p)eipx

(2π)2
(249)

using the definition of Fourier transforms for generalized functions (247), the Fourier transform
(17), and the notation

δ±(p) := θ(±p0)δ(p2 − λ−2
c )

from (38). The adjoint results in

[Φ̃−
o (−p),Φ+

o (x)] =
δ+(p)e−ipx

(2π)2
.

The commutation relations and annihilation of the vacuum by Φ−
o provide the convenient result

⟨Ωo|(Φ−
o (x))

k
n∏
j=1

Φ̃+
o (pj) Ωo⟩ =

n! δk,n
(2π)2n

n∏
j=1

δ+(pj)e
ipjx (250)

demonstrated by induction and using the Kronecker delta, δk,n.
The Feynman series for scattering amplitudes results from the Neumann series solution with

the Dyson operator substituted into the scattering amplitudes (246). The Dyson operator is

UD(λ1, λ2) := eiH0λ1e−iH(λ1−λ2)e−iH0λ2

= I− i
∫ λ1

λ2

ds Hint(s)UD(s, λ2)
(251)

evaluated with λ1 = −λ2 → ∞. The resulting Volterra equation of the second kind for
UD(λ1, λ2) is satisfied formally by the Dyson operator. In (246), Φo(x) is a neutral scalar
free quantum field and H0 generates time translations of these free fields. The Hamiltonian H
is expressed in free fields.

H := H0 +Hint

with a conjectured interaction Hamiltonian for a self-interacting, neutral scalar field of

Hint(x0) =
∑
ℓ≥4

aℓ

∫
dx : (Φo(x0,x))

ℓ : . (252)

The summation is over all x ∈ R3. The notation : (Φo)
ℓ : designates normal ordering of the

Hamiltonian (252). Normal ordering designates that the factors of Φ+
o and Φ−

o in the binomial
expansion of (Φo)

ℓ are ordered with every Φ−
o to the right of any Φ+

o [7, 23, 51, 60]. Normal
ordering sets ⟨Ωo|Hint Ωo⟩ = 0 but does not place the vacuum |Ωo⟩ in the null space of the
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Hamiltonian, |Hint Ωo⟩ ̸= 0. From the Campbell-Baker-Hausdorff expression for this example
of a boson field,

: exp(αΦo) : = : exp(αΦ−
o + αΦ+

o ) :

= exp(αΦ−
o ) exp(αΦ

+
o )

= exp(αΦ−
o + αΦ+

o ) exp(−α2

2 [Φ−
o ,Φ

+
o ]).

From section 3.3, the commutator is central, commutes with both Φ+
o and Φ−

o , in the algebra
generated by Φ+

o and Φ−
o . Note that [Φ−

o (x),Φ
+
o (y)] diverges for x = y and this is one of many

divergences encountered in the elevation of classical to quantum Hamiltonian in the canonical
formalism. Normal ordering is not a linear operation on the algebra generated from Φ+

o and
Φ−
o . A contradiction to a general specification for normal order as a linear operation in the

algebra of fields is illustrated by the free field commutation relation

[Φ−
o (f1),Φo(f2)] =W2(f1 f2).

Normal ordering produces

: [Φ−
o (f1),Φ

+
o (f2)] : = 0 ̸= :W2(f1 f2) : =W2(f1 f2).

The choice of Hamiltonian (252) associates RQFT with a classical field model. Normal or-
dering determines an order for the non-commuting operators that elevate commuting classical
dynamical variables.

The first contributing order of the Neumann series for the Dyson operator UD(λ1, λ2) ap-
proximates

UD(λ1, λ2) ≈ I− i
∫ λ1

λ2

ds Hint(s).

Then, the first contributing order to the Feynman rules scattering amplitude (246) is the gen-
eralized function

Sk,n−k((p)n) = ⟨Φ̃+
o (pk) . . . Φ̃

+
o (p1)Ωo|UD(∞,−∞)Φ̃+

o (pk+1) . . . Φ̃
+
o (pn)Ωo⟩

≈ ⟨Ωo|
k∏
j=1

Φ̃−
o (−pj) (I− i

∫ ∞

−∞
ds Hint(s))

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= ⟨Ωo|
k∏
j=1

Φ̃−
o (−pj) (I− i

∑
ℓ

aℓ

∫
dx
∑
ν

(
ℓ
ν

)
(Φ+

o (x))
ν(Φ−

o (x))
ℓ−ν)

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩.

The normal ordered binomial expansion and commutation relations (249) provide that the only
term that does not include forward scattering contributions has ℓ = n and ν = k. Other
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terms include forward contributions and are discarded in this characterization of the connected
function CWk,n−k associated with a non-forward scattering amplitude. An associated connected
VEV derives from the non-forward contribution to

−ian
(
n
k

)∫
dx ⟨Ωo|

k∏
j=1

Φ̃−
o (−pj) (Φ+

o (x))
k(Φ−

o (x))
n−k

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= −ian
(
n
k

)∫
dx ⟨Ωo|

k∏
j=1

Φ̃−
o (−pj) (Φ+

o (x))
kΩo⟩⟨Ωo(Φ−

o (x))
n−k

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= −i n! an
(2π)2n−4 δ(−p1. . .−pk+pk+1. . .+pn)

n∏
ℓ=1

δ+(pℓ)

= −icn δ(−p1. . .−pk+pk+1. . .+pn)
n∏
j=1

δ(p2j − λ−2
c )

= −i CW̃k,n−k((−p)k, (p)k+1,n).

Commutations of Φ̃−
o (−pj) with Φ̃+

o (pℓ) produce forward contributions and are discarded in the
second line. Substitution of (250) and the Fourier expansion of the delta function results in the
third line. Equality of the third lines and fourth lines applies for the energy support constrained
functions from the completion of basis spaces P, and not for all tempered functions S. Factors
θ(pj0) in the δ+(pj) are redundant with the support constraints for either the appropriate
function in P or ∗-dual (11) of P. The coefficients aℓ in the Hamiltonian (252) and the cn in
the description of the VEV (54) are related

cn :=
n! an

(2π)2n−4 .

In the final line, a neutral scalar field connected VEV CW̃k,n−k from section 3.4 is identified
and substituted. For Hamiltonians (252), the first order contribution to the Feynman series

scattering amplitude (246) coincides with the Fourier transform of a connected VEV CW̃k,n−k
from section 3.4. While the Hamiltonian (93) of the construction is distinct from the conjectured
canonical formalism Hamiltonian (252), the weak coupling scattering amplitudes of the two
developments nearly coincide: the Feynman series continues with renormalized, higher powers
of the interaction Hamiltonian. The phase ‘i’ is irrelevant except for phase differences between
forward and non-forward contributions, and the effects of these phases vanish in the scattering
limit. The phase difference implements nonnegativity of the scalar product A.2.

The first contributing order of the scattering amplitudes (246) coincide up to a phase with
the constructed scattering amplitudes (99) for a neutral scalar field. Then, the scattering am-
plitudes of low order expansion in RQFT and the constructions are the same: the Feynman
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rules scattering amplitudes asymptotically coincide at weak coupling with the scattering am-
plitudes from the fully quantum mechanical constructions. This equality persists in non-scalar
field examples if relativistic corrections to the Feynman series are made in appropriate cases
[34].

The RQFT rule (246) follows from a conjectured asymptotic equality of free and interacting
fields. If the free field were unitary similar to the interacting field at asymptotic times, λ→ ±∞,

e−iHλΦ(f)eiHλ = e−iH0λΦo(f)e
iH0λ

with
Ωo = eiHλe−iH0λΩ,

then the scattering amplitude (246) would follow. The unitary similarity of interacting and free
fields, and translation invariance of vacuums would provide that

⟨Φ(f
k
) . . .Φ(f

1
)Ω|Φ(f

k+1
) . . .Φ(f

n
)Ω⟩

= ⟨Φo(fk) . . .Φo(f1)Ωo|UD(λout , λin)Φo(fk+1
) . . .Φo(fn)Ωo⟩.

(253)

However, neither precedent is true.

1. If a unitary similarity implied (253), that similarity would contradict the Haag (Haag-
Hall-Wightman-Greenberg) theorem [9, 55]. Haag’s theorem demonstrates that unitary
similarity of free and interacting fields is not possible. Unitary similarity applies to fields
Φ and Φo that are densely defined operators in a common Hilbert space [24].

2. In the Fock space of the free field, translation invariance of the free field VEV (45) provides
that the free field vacuum Ωo is translation invariant. But, this vacuum is not invariant
to eiHλ, HintΩo ̸= 0. The all creation operator term contributes. For example, from the
commutation relation (249) and VEV (250), the Fourier transform of delta functions, and
the annihilation of the vacuum by Φ−

o , it follows that

⟨Φ̃+
o (pk) . . . Φ̃

+
o (p1)Ωo|HintΩo⟩ = ak⟨Φ̃+

o (pk) . . . Φ̃
+
o (p1)Ωo|

∫
dx (Φ+

o (x))
kΩo⟩

=
k! ak

(2π)2k−3 δ(p1+. . .+pk)
k∏
j=1

eiωjx0δ−(pj)

̸= 0

for the Hamiltonians (252).

If (251) were used to extrapolate transition amplitudes (246) to finite time intervals λ1 − λ2,
these transition amplitudes would not be Lorentz covariant.
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Higher order contributions to the Feynman series for scattering amplitudes (246) diverge
but terms are renormalized (regularized) to achieve convergent contributions in each order of
the iteration (246). If a finite number of regularizations suffice to achieve convergent terms to all
orders, then the interaction Hamiltonian is denoted renormalizable. The series are considered
to be asymptotic to scattering amplitudes.

7.10 Temporal evolution of function supports

For every f̃(p) ∈ S(R3),
φ̃(p) = (p0 + ω)e−iEλf̃(p)

is a function within HP . λ is real parameter that translates the temporal support. The inverse
Fourier transform of the state describing function φ̃ is

φ(x) =

∫
dp

(2π)2
eipx(p0 + ω)f̃(p)

=

(
−i ∂
∂x0

+
√
λ−2
c −∆

)∫
dp0

(2π)
1
2

eip0(x0−λ)
∫

dp

(2π)
3
2

e−ip·xeiωλf̃(p)

= (2π)
1
2

(
−i ∂
∂x0

+
√
λ−2
c −∆

)
δ(x0 − λ)f(λ,x)

(254)

with ∆ the Laplacian for R3, the derivative of δ(t) is a generalized function [19], and the
function f(λ,x) ∈ S(R3) for any real λ.

f(λ,x) :=

∫
dp

(2π)
3
2

e−ip·xeiωλf̃(p) (255)

with ω = ω(p) from (8) and f̃(p) ∈ S(R3). With the understandings of section 4.1, φ(x) defines
functions supported on time x0 = λ with spatial support described by f(λ,x).

For a rotationally invariant function f̃ , the z-axis of the parametrization of p can be aligned
with the z-axis for any selected spatial vector x. In this instance, changing summation variables
to polar coordinates results in

p · x = ρr cosϕ

with

ρ2 := p2

r2 := x2

and

f(λ,x) :=

∫ ∞

0
ρ2dρ

∫ π

0
sinϕdϕ

∫ 2π

0

dθ

(2π)
3
2

e−iρr cosϕeiωλf̃(p).
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The Cartesian components of these polar coordinates are

p =

 ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 . (256)

The angle summations are elementary leaving a single summation to evaluate (255) for a rota-
tionally symmetric, even f̃(p).

f(λ,x) =
−i√
2π r

∫ ∞

0
ρdρ

(
eiρr − e−iρr) eiωλf̃(ρ)

=
−i√
2π r

∫ ∞

−∞
ρdρ eiρreiωλf̃(ρ)

= − 1√
2π r

∂

∂r

∫ ∞

−∞
dρ eiρreiωλf̃(ρ)

(257)

from a change of summation variable ρ→ −ρ in the second term and the dominated convergence
theorem.

Nonrelativistically supported Gaussian functions provide an elementary example. Gaussian,
minimum uncertainty functions centered of zero momentum,

f̃(p) := e−σ2p2
, (258)

are even and rotationally symmetric with a length parameter σ that characterizes the breadth
of the spatial support of (255). Gaussian functions achieve the Heisenberg uncertainty lower
bound on location and momentum support spread. If the support of f̃(p) is over nonrelativistic
ρ, p2 = ρ2 ≪ λ−2

c within the dominant support, then

ω ≈ λ−1
c +

1

2
λcρ

2 − 1

8
λ3cρ

4 . . .

from Taylor series expansion of (8). If λ is sufficiently small, then

exp(iωλ) ≈ exp(iλ−1
c λ+

i

2
λcρ

2λ).

λ is sufficiently small if λ3cρ
4λ≪ 16π within the dominant support of f̃(p), and this is implied

if
λ≪ 16πλc

since σ2 ≫ λ2c for nonrelativistically supported f̃(p) and σρ < κ for κ ∼ 10 dependent on the
confidence in likelihood. For nonrelativistically supported f̃(p) and sufficiently small λ, (257)
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is approximated with ω ≈ λ−1
c + 1

2λcρ
2,

f(λ,x) ≈ − ei
λ

λc

√
2π r

∂

∂r

∫ ∞

−∞
dρ eiρre−(σ2−i 1

2
λcλ)ρ2

= − ei
λ

λc

√
2 r (σ2 − i12λcλ)

1
2

∂

∂r
e−r2/(4(σ2−i 1

2
λcλ))

=
ei

λ
λc

(2(σ2 − i12λcλ))
3
2

e−r2/(4(σ2−i 1
2
λcλ))

from the Gaussian summation (269) in appendix 7.14.
Even, rotationally symmetric f̃(p) with φ̃2 ∈ HP and relativistic time translations that

preserve the form are

f̃(p) = h̃(ρ2)e−2σ2λ−2
c (λcω−1)

for continuously differentiable, polynomially bounded growth functions h̃(ρ2). The time trans-
lates have complex support spread parameters σ2 and a phase shift independent of p.

e−iωλf̃(p) = h̃(ρ2)e−(2σ2λ−2
c +iλ−1

c λ)(λcω−1)e−iλ−1
c λ.

If h̃(ρ2) ≈ 1 for λcρ≪ 1, these f̃(p) approximate the Gaussian functions (258)

f̃(p) ≈ e−σ2ρ2

if momentum support is nonrelativistic, λcρ ≪ 1 within the dominant support of f̃(p). The
approximation derives from (8),

λcω ≈ 1 +
(λcρ)

2

2
.

In very relativistic instances ω ≈ ρ and f(λ,x) becomes a more Lorentzian than Gaussian
function over r = ∥x||. Without approximation of the Hamiltonian, estimates for f(λ,x) (257)
apply for all λ.

7.11 Center-of-momentum reference frames

For any energy-momentum vector q with q2 > 0 and momentum q, Poincaré invariance of
the scalar product can be exploited to transform to a primed inertial reference frame with
q transformed to q′ = 0. In particular, Poincaré invariance of the scalar product can be
exploited to transform to the center-of-momentum frame for n particles, a reference frame with
p1 +p2 + . . .pn = 0. Two particles of energy-momenta q1, q2 with q21 = q22 = m2 and momenta
q1,q2 illustrate the result. There is a Lorentz boost to a reference frame with q′

2 = −q′
1.



7 APPENDICES 184

The Poincaré transformation to a center-of-momentum frame is developed in this appendix.
A zero momentum is unaffected by a coordinate frame translation. Following a boost with
translation, the center-of-mass of n particles may be collocated with the origin of coordinates
in a center-of-momentum frame.

The transformation from the original energy-momentum coordinates to coordinates in the
primed reference frame is

p′
j = Λpj

with Λ a Lorentz transform. The center of momentum frame is defined by this linear transfor-
mation Λ that sets

Λq1 = (ω(q′
1),q

′
1) and Λq2 = (ω(q′

1),−q′
1).

Both q1 and q2 are on mass shells defined by finite rest mass m. The transformation Λ is a
proper (det(Λ)=1), orthochronous (Λ00 > 0) Lorentz transformation

Λ := B(β)R

consisting of a rotation R and a boost B(β). To evaluate Λ, designate the center-of-momentum
for q1, q2 by

q := q1 + q2 =


ω(q1) + ω(q2)
ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 (259)

in polar coordinates with the momentum q := (qx, qy, qz),

ρ := ∥q∥ = ∥q1 + q2∥,

and

cosϕ =
qz
ρ
, sinϕ =

√
q2x + q2y

ρ

cos θ =
qx√
q2x + q2y

, sin θ =
qy√
q2x + q2y

(260)

with quadrants selected for θ, ϕ to correspond with the signs of qx, qy, qz. θ ∈ {0, 2π} is the
anticlockwise angle of q from the x-axis in the x-y plane, and ϕ ∈ {0, π} is the angle of q from
the z-axis in the plane containing q and the z-axis. The rotation R aligns the momentum q
with the primed z-axis,

ω(q1)+ω(q2)
0
0
ρ

 = Rq :=


1 0 0 0
0 sin θ − cos θ 0
0 cos θ cosϕ sin θ cosϕ − sinϕ
0 cos θ sinϕ sin θ sinϕ cosϕ




ω(q1)+ω(q2)
ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ
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and the boost B(β) zeros the momentum.


ω(q′

1) + ω(q′
2)

0
0
0

 =


γ(β) 0 0 −β

0 1 0 0

0 0 1 0

−β 0 0 γ(β)




ω(q1)+ω(q2)
0
0
ρ



with
β :=

ρ√
(ω(q1) + ω(q2))2 − ρ2

and γ(β) =
√

1 + β2.
The transformation to the center-of-momentum frame determined by q1 and q2 is the

Lorentz transform Λ := B(β)R.


ω(q′

1) + ω(q′
2)

0
0
0

 =


γ(β) −β qx

ρ −β qy

ρ −β qz

ρ

0
qy

ρxy
− qx

ρxy
0

0 qxqz

ρxyρ
qyqz

ρxyρ
−ρxy

ρ

−β γ(β) qx

ρ γ(β)
qy

ρ γ(β) qz

ρ




ω(q1) + ω(q2)
qx
qy
qz

 (261)

with ρxy :=
√
q2x + q2y .

The inverse transformation Λ−1 is

Λ−1 = (B(β)R)−1 = RTB(−β) = RTB(−β)T = (B(−β)R)T

or

Λ−1 =


γ(β) 0 0 β

β qx

ρ
qy

ρxy

qxqz

ρxyρ
γ(β) qx

ρ

β
qy

ρ − qx

ρxy

qyqz

ρxyρ
γ(β)

qy

ρ

β qz

ρ 0 −ρxy

ρ γ(β) qz

ρ

 .

7.12 Two body classical trajectories

In this appendix, notation is established and results for two body trajectories from classical
mechanics are collected.

Nonrelativistic two body problems provide explicit examples of classical trajectories uj(λ).
The motion of two classical bodies interacting by a scalar pair potential is executed within
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a plane. A pair potential depends solely on the body separation and constant properties of
the bodies. The location of bodies in a plane at each time λ is specified by Cartesian spatial
coordinates,

uj :=

 rj cos θj
rj sin θj

0

 (262)

with rj := ∥uj∥ the Euclidean length. Notation is abbreviated, uj = uj(λ) and similarly for
rj , θj .

The Lagrangian for a two body problem in the notation of this note is

L =
1

2
m1c

2u̇2
1 +

1

2
m2c

2u̇2
2 − V (∥u1 − u2∥)

with V the pair potential. The separation of the two bodies is

us = u1 − u2.

In a reference frame with the center-of-mass concident with the origin of coordinates,

m1u1 +m2u2 = 0.

The solutions for ui given the separation us in the center-of-mass coordinate frame are

u1 =
m2us

m1 +m2
, u2 = −

m1us
m1 +m2

.

Substitution results in a single body Lagrangian for us,

L =
1

2
µc2u̇2

s − V (∥us∥),

with µ denoted the reduced mass.

µ =
m1m2

m1 +m2
.

This results in Newton’s equation of motion for the separation,

µc2üs = −
∂V

∂us
(263)

with
∂V

∂us
= ∇usV

a gradient vector. For equal masses in the center-of-mass reference frame,

µ =
m

2
, u2 = −u1
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and with a −g/r pair potential, V = −gmc2/∥us∥, substitution of 2∥u1∥ = ∥us∥ for the
separation results in equation of motion

ü1 = −
g

4

u1

∥u1∥3
. (264)

The interaction is characterized by the length g. For gravity, g = Gm2/mc2 and for electrostat-
ics g = Ke2/mc2. For a mass of one a.m.u. and an elementary charge of one, g = 1.23× 10−53

m for gravity and g = 1.54× 10−18 m for electrostatics.
With

L := u2
1θ̇1,

the relationships of Cartesian and radial coordinates for two equal mass bodies m = m1 = m2

in the center-of-mass reference frame (u2 = −u1) include

u2
j = r2j

u̇j · uj = ṙjrj

u̇2
j = ṙ2j +

L2

r2j
.

(265)

The trajectory u1 in the center-of-mass reference frame for the pair of equal mass bodies
interacting via a −g/r pair potential are conveniently parametrized by θ := θ1 from (262). A
solution to Kepler’s problem is

r1 =
L2/4g

1− ϵr cos θ
and

λ(θ) =
1

L

∫ θ

θ0

dϕ r1(ϕ)
2

with λ(θ0) = 0 and
ϵr :=

√
1 + 32e1L2/g2.

For e1 > 0, the solution is unbound and diverges when ϵr cos θ = 1. For these unbound
trajectories, θ is constrained to the interval (β, 2π−β) with β = cos−1(ϵ−1

r ). Bound states have
e1 ≤ 0 and

e1 ≥ −
g2

32L2
.

e1 = −g2/32L2 are the circular orbits. For the circular orbits of −g/r pair potentials,

4L2 = gr1.



7 APPENDICES 188

7.13 Nonrelativistic energy approximations

In this appendix, nonrelativistic approximations to the Hamiltonian (93) are developed.
A nonrelativistic approximation of the energies ωk from (8) derives from the Taylor theorem

polynomial approximation for momenta pk near qk. To second order in pk − qk,

ωk ≈ ω(qk) +
qk · (pk − qk)

ω(qk)
+

(pk − qk)
2

2ω(qk)
− (qk · (pk − qk))

2

2ω(qk)3

and the Cauchy-Schwarz-Bunyakovski inequality provides that

(qk · (pk − qk))
2 ≤ q2

k (pk − qk)
2.

For nonrelativistic velocities
q2
k ≪ ω(qk)

2

and then
(qk · (pk − qk))

2

2ω(qk)3
≪ (pk − qk)

2

2ω(qk)
.

This justifies neglect of the last term from the Taylor series in (266) if the support of state
describing functions excludes relativistic momenta, if, for example, (150) of section 4.4 applies.
The resulting nonrelativistic approximation for ωk is

ωk ≈ ω(qk) +
qk · (pk − qk)

ω(qk)
+

(pk − qk)
2

2ω(qk)
. (266)

The approximation applies for nonrelativistically supported state describing functions. If qk
is a representative for the support of a state describing function and p is any point from the
nonrelativistic dominant support, then ∥pk − qk∥ ≪ λ−1

c ≤ ω(qk). (266) provides a convenient
approximation for the Hamiltonian (93) applied in each n-argument subspace,

H =
∑
k

ωk.

If qk and pk are both nonrelativistic, ∥qk∥, ∥pk∥ ≪ λ−1
c , then both correction terms to ω(qk)

in (266) are second order in small quantities. Neglect of the term proportional to (p2 − qk)
2

in (148) results in a convenient linear in p2 approximation for the energy. However, with
nonrelativistic momenta, this approximation is also second order in small quantities and neglect
of the quadratic term is not justified. Neglect of the second correction requires that (pk−qk)2 ≪
|qk · (pk − qk)| in addition to nonrelativistic momenta.

A nonrelativistic approximation (120) of the energies ω(qk) also derives from a Taylor
theorem polynomial approximation if ∥qk∥ ≪ ω(qk).

ω(qk) ≈
1

λc
+
λcq

2
k

2

=
1

λc

(
1 +

u̇k(λ)
2

2

)
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from the nonrelativistic relation between momentum and velocity (120) and with the reduced
Compton wavelength (9). This approximation applies for nonrelativistic velocities of the cor-
responding classical trajectories uk(λ) in appropriate reference frames.

The center-of-mass and the relative motion of bodies decouple in nonrelativistic instances.
For two argument functions (140) in section 4.4, the assumption that decouples the motions
is that the momentum of the center-of-momentum p′

3 = p3 + p4 from (140) in section 4.4 is
nonrelativistic. Then, from (120),

p′2
3 ≪

1

λ2c
< ω(p′

3)
2.

In these nonrelativistic instances, Taylor expansion results in

ω3 + ω4 = ω(
p′
3+p′

4
2 ) + ω(

p′
3−p′

4
2 )

≈ 2ω(12p
′
4) +

p′2
3

4ω(12p
′
4)

≈ 2ω(12p
′
4) +

1
4λcp

′2
3

using (8), (120) and (266). In this nonrelativistic approximation, the argument of the conserva-
tion of energy delta function becomes independent of p′

1 and p′
3 as a consequence of momentum

conservation, p′
1 = p′

3.

ω1 + ω2 − ω3 − ω4 ≈ 2ω(12p
′
2) +

1
4λcp

′2
1 − 2ω(12p

′
4)− 1

4λcp
′2
3

= 2ω(12p
′
2)− 2ω(12p

′
4).

(267)

This approximation appears in the energy conservation delta function independently of the
propagation interval λ, unlike the generation of time translation with λ multiplying any error
in the Hamiltonian.

7.14 Gaussian quadratures

In this section, the nonrelativistic, brief interval, limited acceleration approximation of the
functional Q(1) is evaluated as elementary functions for a range of trajectories determined by
initial conditions u(0), u̇(0). From (171), the Q(F ) of interest follow as derivatives of Q(1).
For this evaluation, the free field VEV contribution is distinguished from the connected VEV
contribution,

Q(F ) := QF (1) +QC(1), (268)
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with

QF (1) =
ag
λ2c

∫
dp′

2dp
′
4 δ(p

′
2−p′

4) e
p′
2·b2+p′

4·b4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2

and

QC(1) =
agc4
8λc

∫
dp′

2dp
′
4 δ(p

′2
2 −p′2

4 ) e
p′
2·b2+p′

4·b4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2

from the definitions (146) for T4 and (169) for Q(F ), and in the abbreviated notation (177).
Evaluation of QF (1) and QC(1) follows from the Gaussian quadrature

√
σ2
∫ ∞

−∞
ds e−σ2s2+βs =

√
π eβ

2/(4σ2) (269)

for σ2, β ∈ C with Re(σ2) > 0.
It is convenient to introduce compact notation for the complex length parameter,

σ2 = σ2R + iσ2Q (270)

with σ2R, σ
2
Q ∈ R and σ2R > 0.

From (268), evaluation of the momentum conservation delta function, ea+b = eaeb, trans-
lation of the summation variables, and substitution of the Gaussian summation (269) result
in

QF (1) =
ag
λ2c

∫
dp′

2 e
p′
2·(b2+b4) e−2σ2

R(p′
2−2w)2

=
ag
λ2c
e2w·(b2+b4)

∫
dp′

2 e
p′
2·(b2+b4) e−2σ2

R p′2
2

=
ag
λ2c

(
π

2σ2R

) 3
2

e2w·(b2+b4)e
(b2+b4)

2

8σ2
R

(271)

for the free field VEV contribution to Q(1).
Expressing the summations in spherical coordinates is convenient to evaluate the energy

conservation delta function in the connected VEV contribution QC(1) to Q(1). Factoring the
Gaussian functions in (268) provides that

QC(1) =
c4ag
8λc

e−8σ
2
Rw2

∫
dp′

2dp
′
4 δ(p

′2
2 −p′2

4 )

×ep′
2·(b2+4σ2w)ep

′
4·(b4+4σ2w)e−σ

2p′2
2 e−σ

2p′2
4 .

(272)

A selection of b2 = σ2c2, b4 = σ2c4 with c2, c4 ∈ R3 results in b2+4σ2w and b4+4σ2w
that are complex constants times real spatial vectors. Then, spherical coordinates simplify the
summations in (272). Subsequently, the result from evaluation of the energy conserving delta
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function and summations is analytically extended to evaluate QC(1) at the physical values of
interest, b4 = −b2 = iu.

A change of summation variables to spherical coordinates

p′
j = (ρ′

j cos θj cosϕj , ρ
′
j sin θj cosϕj , ρ

′
j sinϕj)

with the zj-axes aligned with the real vectors cj + 4w sets

p′
j · (bj+4σ2w) = ρ′

jrj sinϕj .

j = 2, 4 and

r2 = σ2
(
(c2 + 4w)2

) 1
2

=
(
(b2 + 4σ2w)2

) 1
2

r4 = σ2
(
(c4 + 4w)2

) 1
2

=
(
(b4 + 4σ2w)2

) 1
2

(273)

with Re(rj) > 0 from Re(σ2) > 0. Rotational invariance of the state describing function (149)
justifies the selection of axes. With the change to spherical coordinates,

QC(1) =
c4ag
8λc

e−8σ2
Rw2

∫ ∞

0
ρ′2
2 dρ

′
2

∫ ∞

0
ρ′2
4 dρ

′
4 δ(ρ

′2
2 − ρ′2

4 ) e
−σ2ρ′2

2 e−σ2ρ′2
4

×
∫ 2π

0
dθ2

∫ π
2

− π
2

cosϕ2dϕ2 e
ρ′
2r2 sinϕ2

∫ 2π

0
dθ4

∫ π
2

− π
2

cosϕ4dϕ4 e
ρ′
4r4 sinϕ4 .

The θj and ϕj summations are elementary.∫ 2π

0
dθj

∫ π
2

− π
2

cosϕj dϕj e
ρ′

jrj sinϕj = 2π
eρ

′
jrj − e−ρ′

jrj

ρ′
jrj

.

The ρ′
j summations are∫ ∞

0
ρ′2
j dρ

′
j

eρ
′
jrj−e−ρ′

jrj

ρ′
jrj

h(ρ′2
j ) =

∫ ∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )−
∫ ∞

0
ρ′
jdρ

′
j

e−ρ′
jrj

rj
h(ρ′2

j )

=

∫ ∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )−
∫ −∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h((−ρ′

j)
2)

=

∫ ∞

−∞
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )

from reflection of the summation variable in the second term. Denoted by h(ρ′2
j ), both the Gaus-

sian functions and energy conservation delta function are even functions of the ρ′
j . Substitution
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of these summations into QC(1) then provides that

QC(1) = (2π)2
c4ag
8λc

e−8σ2
Rw2

∫ ∞

−∞
ρ′
2dρ

′
2

∫ ∞

−∞
ρ′
4dρ

′
4δ(ρ

′2
2 −ρ′2

4 )e
−2σ2

Rρ
′2
2
eρ

′
2r2+ρ

′
4r4

r2r4
.

The delta function [19] is

δ(ρ′2
2 −ρ′2

4 ) =
δ(ρ′

2−ρ′
4)

2|ρ′
2|

+
δ(ρ′

2+ρ
′
4)

2|ρ′
2|

and then

QC(1) =
π2c4ag
4λcr2r4

e−8σ2
Rw2

∫ ∞

−∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)
. (274)

Reflecting the summation variable in the domain (−∞, 0), the remaining summation reorganizes
to ∫ ∞

−∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)

=

∫ ∞

0
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)

−
∫ 0

∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
e−ρ′

2(r2+r4) − e−ρ′
2(r2−r4)

)
=

∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4) + e−ρ′
2(r2+r4) − e−ρ′

2(r2−r4)
)

=

∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2r2 − e−ρ′

2r2 )( eρ
′
2r4 − e−ρ′

2r4
)
.

For large real components of r2, r4, a convenient approximation applies. If

Re(r2),Re(r4)≫ 0,

then
eρ

′
2rj ≫ e−ρ′

2rj

and the dominant support of the integrand is for large ρ′
2. Neglect of the smaller terms and

subsequent inclusion of the weakly weighted summation over ρ′
2 ∈ (−∞, 0) approximates (274)
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when Re(r2),Re(r4) from (273) are sufficiently large. With this approximation,∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2r2−e−ρ′

2r2 )( eρ
′
2r4−e−ρ′

2r4
)
≈
∫ ∞

−∞
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2 eρ

′
2(r2+r4)

=
∂

∂µ

∫ ∞

−∞
dρ′

2 e
−2σ2

Rρ
′2
2 eρ

′
2(r2+r4+µ)

=
∂

∂µ

(
π

2σ2R

) 1
2

e
(r2+r4+µ)2

8σ2
R

=

(
π

2σ2R

) 1
2
(
r2 + r4
4σ2R

)
e

(r2+r4)
2

8σ2
R

from the Gaussian summation (269) and evaluated at µ = 0. Sufficiently large r2, r4 is de-
termined to set the peak of the dominant support of e−2σ2

Rρ
′2
2 +ρ′

2(r2+r4) much greater than the
width of the support. The envelope of the support is determined by the real component σ2R of
σ2. The width of support is determined from

e−2σ2
Rρ

′2
2 +ρ′

2Re(r2+r4) = e−2σ2
R(ρ′

2−ρo)2e4σ
2
Rρ

2
o

for ρo = Re(r2 + r4)/(4σ
2
R), the value of ρ′

2 at the peak of the envelope of support. Then large
rj is

Re(r2 + r4)≫ 8
√
σ2R (275)

for r2, r4 that are the analytic extensions of (273). This approximation cannot be arbitrarily
accurate with σ2R → 0 due to the bound that ensures the support of the state describing function
(149) is nonrelativistic.

σ2R ≫ λ2c

from (150). Finally, substitution provides

QC(1) ≈
π2c4ag
4λc

(
π

2σ2R

) 1
2 e−8σ2

Rw2

4σ2R

(
r2 + r4
r2r4

)
e

(r2+r4)
2

8σ2
R (276)

for b2 = σ2c2 and b4 = σ2c4 with real cj .
The value of QC(1) of physical interest has bj from (170). In (276), the bj are extended in

C3. After analytic extension,

r2 =
(
(−iu+ 4σ2w)2

) 1
2

r4 =
(
(iu+ 4σ2w)2

) 1
2

(277)

and then
r2 = r4.
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Singularities in the analytic extension of the approximation (276) for QC(1) include simple
divergences at rj = 0 and cut lines due to the multiple sheets of the square root (273) in rj .
Cut lines are oriented toward negative real values of the rj to avoid the large positive real values
of interest. With

r2j := aj + ibj ,

aj , bj ∈ R, the root of r2j is selected to set Re(rj) ≥ 0. Then

Re(rj) =

√
1
2

(√
a2j + b2j + aj

)
Im(rj) = sgn(bj)

√
1
2

(√
a2j + b2j − aj

) (278)

from half-angle formulas for cosine and sine. With the notation (270) for complex σ2 = L(0)2,
the physical values of interest follow from (277),

a4 = a2 = 16(σ4R − σ4Q)w2 − u2 − 8σ2Qu ·w

b4 = −b2 = 32σ2Rσ
2
Qw

2 + 8σ2Ru ·w.
(279)

The analytic extension of the quadrature of interest (272) with b2,b4 ∈ C3 equals the
summation (274) when

b2 = σ2c2
b4 = σ2c4

and cj ∈ R3. The summation (274) analytically extends for b2,b4 ∈ C3 and within the regions
of holomorphy, this extension equals the extension of (272) by the identity theorem. Both
(274) and the approximation (276) are functions of r2, r4 that, with exclusion of the isolated
singularities and cut lines, are functions over b2,b4 ∈ C3. The approximation (276) applies for
b2,b4 ∈ C3 with Re(r2+r4)≫ 8

√
Re(L(0)2). If L(0)2, u2 and u̇2 satisfy the large rj condition

(275), then the analytic extension of the approximation (276) approximates QC(1).
Substitution of the values (170) into (271) and (276) provides the value of interest for Q(1)

in the notation (268),

QF (1) =
ag
λ2c

(
π

2L(0)2R

) 3
2

QC(1) =
π2c4ag

8L(0)2Rλc

(
π

2L(0)2R

) 1
2

e−8l(0)2Rw2

(
1

r2
+

1

r4

)
e

(r2+r4)
2

8L(0)2
R .

(280)

The rj are from (278) with (279). The conditions that produce the approximation of (280) are:
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1. nonrelativistic momenta (120), u̇2 ≪ 1, L(0)2R ≫ λ2c and λcw = u̇ from (119). Nonrela-
tivistic approximation of the Hamiltonian applies for a limited interval λ

2. significant body separation, u2 ≫ L(0)2R, enables the isolation (116) of support to identify
a classical body with a region of space and neglect the cross term in the VEV

3. sufficiently brief intervals to neglect O(λ2) corrections to evolution of the classical dy-
namical variables (160)

4. limited acceleration (165), ∥ü(0)∥ ≤ ϵλc/u
2, justifies neglect of the envelope evolution

correction. Limited error implies a sufficiently limited interval

5. large rj (275) enables approximation of the scalar products with elementary forms.

7.15 Expected value of the energy of φ2(0)

In this appendix, approximations to expected value of the energy

Eq =
⟨Hφ2(0)|φ2(0)⟩
∥φ2(0)∥2

are developed.
H is the Hamiltonian (93) in the two-argument subspace of HP and the state describing

functions φ2(0) are of the form (139) with (142) and (149). The evaluation is a nonrelativistic
and large rj approximation. With appropriate selection of parameters u(0), u̇(0) and L(0)2,
these state describing functions exhibit quantum-classical correspondences.

The Hamiltonian (93) in the two-argument subspace is ω1+ω2. Similarly to the development
in section 4.4.1, for nonrelativistic momenta λ2cp

′2
1 ≪ 1,

ω1 + ω2 ≈ 2ω(
1

2
p′
2) +

1

4
λcp

′2
1

in the Jacobi coordinates (140). The contribution λc
4 p

′2
1 of the center-of-mass to the en-

ergy is negligible if either the descriptive momentum condition (115) applies or the center-
of-momentum description f̃M has a zero expectation. For λ2cp

′2
2 ≪ 1, the approximation (148),

2ω(
p′
2

2
) ≈ 2λ−1

c +
λc
4
p′2
2 ,

the definition of Q(F ) (169), and the relation of powers of momenta with derivatives of Q(1)
(171) results in

⟨Hφ2(0)|φ2(0)⟩ ≈
(
2λ−1

c +
λc
4
∇2

b2

)
Q(1)
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with a Laplacian

∇2
b2

:=
∑
ν

∂2

∂b2
2ν

.

and b2 is the parameter of Q(1) in (169) from section 4.4.3. The b2ν are the three components
of b2, ν = x, y, z.

Evaluation of ∇2
b2
Q(1) follows from the indicated differentiations of Q(1). Q(1) is the sum

of free field and connected VEV contributions (268) evaluated in (271) and (276) in appendix
7.14.

QF (1) =
ag
λ2c

(
π

2σ2R

) 3
2

e2w·(b2+b4)e
(b2+b4)

2

8σ2
R

QC(1) ≈
π2c4ag
4λc

(
π

2σ2R

) 1
2 e−8σ2

Rw2

4σ2R

(
1

r2
+

1

r4

)
e

(r2+r4)
2

8σ2
R

if Re(r2 + r4)≫ 8
√
σ2R. From (273) in appendix 7.14,

r2 =
(
(b2 + 4σ2w)2

) 1
2

r4 =
(
(b4 + 4σ2w)2

) 1
2

and the physical values of interest for the parameters b2, b4 and σ2 are (170). w and u are the
abbreviated notation (177) for initial momenta and positions.

To evaluate the gradient of Q(1), it is convenient to designate A ∈ {F,C}, ν ∈ {x, y, z},
j ∈ {2, 4}, and derivatives as

∂jνg(b2,b4) :=
∂g(b2,b4)

∂bjν
.

Functions fnA((jν)n) are defined

n∏
k=1

∂jkνk
QA(1) := fnA((jν)n)QA(1)

with a recursive definition for the functions fnA from the product rule for derivatives.

f1A(jν) :=
∂jνQA(1)

QA(1)

fk+1,A((jν)k+1) := (∂jk+1νk+1
fkA((jν)k)) + f1A(jk+1νk+1)fkA((jν)k).

(281)

For A = F , differentiation of QF (1) (271) results in

f1F (jν) = 2wν +
b2ν + b4ν

4σ2R

∂jνf1F (jν) =
1

4σ2R
.
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Then the recursive definition (281) provides that

λ2c
4
∇2

b2
QF (1) =

λ2c
4

∑
ν

(
∂jνf1F (jν) + f1F (jν)

2
)
QF (1)

=

(
3λ2c
16σ2R

+ u̇2

)
QF (1)

with b2 = −b4 from (170). λcw = u̇ in the nonrelativistic approximation.
For A = C, differentiation of QC(1) (276) results in

f1C(jν) =
r2 + r4
4σ2R

∂jνrj −
(∂jνrj)

rj

rj′

r2 + r4

∂jνf1C(jν) =
r2 + r4
4σ2R

∂2jνrj +
(∂jνrj)

2

4σ2R

−
(∂2jνrj)

rj

rj′

r2 + r4
+

(∂jνrj)
2

r2j

rj′

r2 + r4
+

(∂jνrj)
2

rj(r2 + r4)2
rj′ .

with introduction of the notation

j′ :=

{
2 if j = 4
4 if j = 2.

Derivatives of rj with respect to the components of bℓ follow from (273).

r2 =
(
(b2 + 4σ2w)2

) 1
2

and then

∂2νr2 =
b2ν + 4σ2wν

r2

∂22νr2 =
1

r2
− (b2ν+2σ2wν)

2

r32
.

Then, the recursive definition (281) provides

∇2
b2
QC(1) =

(∑
ν

∂2νf1C(2ν) + f1C(2ν)
2

)
QC(1)

≈

(∑
ν

r2 + r4
4σ2R

∂22νr2 +
(∂2νr2)

2

4σ2R
+

(
r2 + r4
4σ2R

∂2νr2

)2
)
QC(1)

≈
(
r2 + r4
4σ2R

)2∑
ν

(∂2νr2)
2 QC(1)



7 APPENDICES 198

applying the large rj approximation to retain only the most significant among the proliferation
of terms. From (273), ∑

ν

(∂2νr2)
2 =

(b2 + 4σ2w)2

r22
= 1.

Collecting results,

λc
4
∇2

b2
Q(1) =

(
3λ2c
16σ2R

+ u̇2

)
QF (1)

λc
+
λc
4

(
r2 + r4
4σ2R

)2

QC(1)

within the nonrelativistic and large rj approximations.

7.16 Essentially local functions

The physical understanding of state descriptions in these notes uses that there are functions
arbitrarily dominantly supported within finite volumes among the anti-local functions P(R4).
These functions are essentially localized. There are no strictly localized functions in P(R4),
[32].

H. Reeh and S. Schlieder [44, 52] demonstrated that the operation (a2 −∆)
1
2 over R3 has

the anti-local property: if both f and (a2 −∆)
1
2 f vanish within some finite volume of R3, then

f ∈ L2(R3) is identically zero. ∆ the Laplacian for x ∈ R3. φ ∈ P(R4) has a Fourier transform
of the form

φ̃(p) = (p0 + ω) g̃(p)

with g ∈ S(R4) and ω = (λ−2
c + p2)

1
2 from (8). Then

φ(x) = −idg(x)
dx0

+ (λ−2
c −∆)

1
2 g(x)

and φ vanishing in a finite volume provides that both ġ and (λ−2
c −∆)

1
2 g vanish in the volume

[32]. Anti-locality can be motivated by the observation that if φ(x) was supported solely in
a finite volume of x ∈ R3, then the Fourier transform would be an entire analytic function of
p ∈ R3, but both p0 g̃(p) and ω g̃(p) can not both be entire due to the cut line of ω = (λ−2

c +p2)
1
2 .

One example suffices to demonstrate the existence of essentially localized functions within
P(R4). The selected example φ has a Fourier transform

φ̃(p) = (p0 + ω)g̃(p0) exp(−αp2)

with g ∈ S(R). Then

φ(x) =

∫
dp

(2π)
3
2

(
−ig′(x0) + ωg(x0)

)
exp(−αp2 − ip · x) (282)
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from the properties (19) of the Fourier transform (17).
From the Gaussian summation (269) from appendix 7.14,

∫
dp

(2π)
3
2

exp(−αp2 − ip · x) =

∫ ∞

0

ρ2dρ

(2π)
3
2

∫ 2π

0
dθ

∫ π/2

−π/2
cosϕdϕ exp(−αρ2 − iρr sinϕ)

=

∫ ∞

0

ρ2dρ

(2π)
1
2

exp(−αρ2)
(
e−iρr − eiρr

)
−iρr

=
i

r

∫ ∞

−∞

ρdρ

(2π)
1
2

exp(−αρ2 − iρr)

= −1

r

d

dr

∫ ∞

−∞

dρ

(2π)
1
2

exp(−αρ2 − iρr)

= −1

r

d

dr

1√
2α

exp

(
− r

2

4α

)
= (2α)− 3

2 exp

(
− r

2

4α

)
using the spherical symmetry, change to polar coordinates with z-axis aligned with x = (0, 0, r),

p = (ρ cos θ cosϕ, ρ sin θ cosϕ, ρ sinϕ)

and ρ, r are the positive roots of the Euclidean lengths, ρ2 = p2 and r2 = x2, respectively. The
change of variable ρ′ := −ρ in the second term in the third line and simplification results in
the fourth line. In this case, the summation is the product of three one-dimensional Gaussian
summations (269) from appendix 7.14 but the development in polar coordinates is preparation
for a second required summation. Similarly,∣∣∣∣∣

∫
dp

(2π)
3
2

ω exp(−αp2 − ip · x)

∣∣∣∣∣ =

∣∣∣∣∣ ir
∫ ∞

−∞

ρdρ

(2π)
1
2

ω exp(−αρ2 − iρr)

∣∣∣∣∣
<

1

r

∫ ∞

−∞

|ρ|dρ
(2π)

1
2

ω exp(−αρ2)

=
a

r

with the indicated constant a finite and independent of r. While apparently a loose upper
bound, this bound suffices to demonstrate that the dominant support of φ(x) from (282) lies
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within finite spheres: the likelihood per unit volume decreases as 1/r with expanding distance
r from the center of support. φ(x) is finite for r = 0 and

φ(x) <
|g′(x0)|
(2α)

3
2

exp

(
− r

2

4α

)
+ |g(x0)|

a

r

for every g ∈ S(R). Translations, dilations and any spherically symmetric f̃(p) ∈ S(R3) with
essentially localized support substituted for the Gaussian function also have dominant support
within a finite volume.

7.17 Illustrative relative states

A measurement process is illustrated in this appendix. The example illustrates interpretations
of projection operators, unitary time translations, and relative states discussed in [11] and
appendix 7.2.7. The simplified illustration is not derived from the realizations constructed in
section 3.

Consider an observer with three orthogonal states of interest interacting with an observed
characterized by two orthogonal states. The three states of the observer are designated “no
observation,” “observed state 1” and “observed state 2.” Designate the two observed states as
“up” and “down” regardless of whether they are states characterized by a spin. The two states
could describe any observed quantity characterized by two possibilities, for example: located
within detector A or B; Schrödinger’s live or dead cat; spin up or down. Then, there are six
states of interest within the Hilbert space if the observer is described independently of the
observed, for example, when the observer is distantly space-like separated from the observed
and not entangled. Designate these states using “no” for “no observation,” “sup” for “observed
state 1” and “sdn” for “observed state 2” with “up” and “dn” for the two observed states. For
an ideal measurement, |sdn, up⟩ and |sup,dn⟩ never appear in nature and these states are not
coupled to the states of interest. These two states need not be considered further. This leaves
four states of interest.

|no, up⟩ :=


1
0
0
0

 |no,dn⟩ :=


0
0
1
0

 |sup,up⟩ :=


0
1
0
0

 |sdn,dn⟩ :=


0
0
0
1

. (283)

Presumably, these states represent orthogonal subspaces of states |f⟩ labeled by particular
function sequences f , and their interaction is described by one of the VEV constructed in
section 3.4. The observation is conceived as a scattering event: initially independently described
observed and observer are spatially distant, they approach and strongly interact, and then
entangled observed with observer states propagate away and cease to interact. An effective
Hamiltonian is described below. The Hamiltonian is selected for simplicity.
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The evolution of an initial state described by the four orthogonal states (283) is described

|v(λ)⟩ := U(λ)|vo⟩

with a unitary, 4×4 block diagonal

U(λ) =

(
U2(λ) 0
0 U2(λ)

)
using 2×2 unitary

U2(λ) =

(
eiη cos θ −eiϕ−iρ sin θ
eiρ sin θ eiϕ−iη cos θ

)
.

The four parameters, θ, ϕ, η, ρ, are real. To simplify this example, the two unitary block sub-
matrices are set equal with η = ρ = ϕ = 0 and

θ(λ) :=
π

2

1

I∞

∫ λ

−∞
ds

a2ϵ

(a2 + s2)
1
2
+ϵ
.

The normalization I∞ is a beta function valid if ϵ > 0.

I∞ :=

∫ ∞

−∞
ds

a2ϵ

(a2 + s2)
1
2
+ϵ

=
Γ(12)Γ(ϵ)

Γ(12 + ϵ)
.

θ(λ) is absolutely continuous with θ(−∞) = 0 and θ(∞) = π/2.
The Hamiltonian generates time translation.

H(λ)v(λ) := i
dv(λ)

dλ

= iU̇(λ)vo

= iU̇(λ)U−1(λ)v(λ)

= iU̇(λ)U †(λ)v(λ)

in units of inverse length. For the 2×2 blocks of the Hamiltonian,

H2(λ) = iU̇2(λ)U
†
2(λ)

=

(
−iθ̇ sin θ −iθ̇ cos θ
iθ̇ cos θ −iθ̇ sin θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
0 −iθ̇(λ)

iθ̇(λ) 0

)
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with

θ̇(λ) =
π

2

1

I∞

a2ϵ

(a2 + λ2)
1
2
+ϵ
.

The Hamiltonian is Hermitian as a consequence of the unitarity of U2(λ). The evolution of the
initial state vo occurs most rapidly near λ = 0. The parameter a is a length characterizing the
effective closest approach of observed to observer.

An initial state

|vo⟩ =


α
0
β
0


with α, β ∈ C and normalization |α|2 + |β|2 = 1 evolves to

|v(λ)⟩ = U(λ)|vo⟩ =


α cos θ(λ)
α sin θ(λ)
β cos θ(λ)
β sin θ(λ)

 (284)

with cos θ(−∞) = 1, sin θ(−∞) = 0 and cos θ(∞) = 0, sin θ(∞) = 1. Initially, no observation
has occurred and as time evolves, the observed and observer approach and the likelihood of state
transitions increases. Eventually, the observer and observed separate and likelihoods stabilize
with the relevant observer states entangled with observed states.

The selected form for U(λ) couples the observer with the observed and lacks any evolution
of “up” and “dn” observed states, e.g., evolution of live into dead cats. A more general unitary
transformation implements changes to the likelihoods of live or dead with time, for example,
the composition of a rotation of vo = (1, 0, 0, 0) to (cosϑ, 0, sinϑ, 0) with U(λ). If the transition
is internal to the observed, more general effective interactions apply than if the transition is
due to interaction with the observer. In the case with the transition due to interaction with the
observer, ϑ(λ) would have similar properties to θ(λ) except the transition need not be from one
certain extreme to the other. ϑ(λ) is constrained by physical considerations, e.g., dead cats do
not become live again. For this example composition, the Hamiltonian is time-dependent,

H(λ) =


0 −iθ̇ −iϑ̇ cos2 θ −iϑ̇ cos θ sin θ
iθ̇ 0 −iϑ̇ cos θ sin θ −iϑ̇ sin2 θ

iϑ̇ cos2 θ iϑ̇ cos θ sin θ 0 −iθ̇
iϑ̇ cos θ sin θ iϑ̇ sin2 θ iθ̇ 0


and reproduces the result (284) but with α = cosϑ(λ) and β = sinϑ(λ).
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The projections onto the perceived observed states are

Pup =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Pdn =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


and the projections onto the possible states of the observer are

Eno =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 Esup =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Esdn =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

These projections commute, [Exx, Pyy] = 0. This commutation implies the decomposition into
relative states discussed in [11] and appendix 7.2.7. The projections onto perceived observed
states, Pyy, commute with time translation, [U(λ), Pyy] = 0, providing that the likelihoods
of the two observed states do not vary with time. The projections onto the possibilities for
observer state, Exx, do not commute with time translation and state of the observer evolves
with time. Likelihoods are

up likelihood = E[Pup] = ⟨v(λ)|Pupv(λ)⟩ = |α|2

and
dn likelihood = E[Pdn] = ⟨v(λ)|Pdnv(λ)⟩ = |β|2

both independently of λ in the first example. The likelihoods of the observer having the
indicated perceived history of observations are

likelihood of no observation = E[Eno] = ⟨v(λ)|Enov(λ)⟩ = cos2 θ(λ)
λ→∞−−−→ 0

likelihood that up observed = E[Esup] = ⟨v(λ)|Esupv(λ)⟩ = |α|2 sin2 θ(λ)
λ→∞−−−→ |α|2

likelihood that dn observed = E[Esdn] = ⟨v(λ)|Esdnv(λ)⟩ = |β|2 sin2 θ(λ)
λ→∞−−−→ |β|2.

From (215) and for the state density operator ρ = |v(λ)⟩⟨v(λ)| for the pure state |v(λ)⟩, the
relative state density operators,

ρxx :=
ExxρExx
E[Exx]

,
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are

ρno =


|α|2 0 αβ 0
0 0 0 0
αβ 0 |β|2 0
0 0 0 0



ρsup =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



ρsdn =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

These are unit trace matrices operating in orthogonal subspaces, that is, with ranges in the
null spaces of the other state density operators. ρxxρxx

′
= 0 unless xx’=xx.
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